Division of Engineering, Brown University, Providence, Rhode Island 02912, USA.
Phys Rev Lett. 2010 Sep 10;105(11):115502. doi: 10.1103/PhysRevLett.105.115502. Epub 2010 Sep 7.
Fracture in metals is controlled by material behavior around the crack tip where size-dependent plasticity, now widely demonstrated at the micron scale, should play a key role. Here, a physical origin of the controlling length scales in fracture is identified using discrete-dislocation plasticity simulations. Results clearly demonstrate that the spacing between obstacles to dislocation motion controls fracture toughness. The simulations support a continuum strain-gradient plasticity model and provide a physical interpretation for that model's phenomenological length scale. Analysis of a dislocation pileup under a stress gradient predicts the yield stress to increase with increasing obstacle spacing, physically rationalizing the simulations.
金属的断裂由裂纹尖端周围的材料行为控制,在微米尺度上广泛表现出的尺寸相关塑性应该起着关键作用。在这里,使用离散位错塑性模拟确定了断裂中控制长度尺度的物理起源。结果清楚地表明,位错运动障碍之间的间距控制着断裂韧性。这些模拟支持连续应变梯度塑性模型,并为该模型的唯象长度尺度提供了物理解释。在应力梯度下对位错堆积的分析预测屈服应力随障碍物间距的增加而增加,从物理上合理地解释了这些模拟。