Department of Physics, Princeton University, Princeton, New Jersey 08544, USA.
Phys Rev Lett. 2010 Sep 10;105(11):116805. doi: 10.1103/PhysRevLett.105.116805. Epub 2010 Sep 9.
We show that the entanglement spectrum can be used to define non-local order in gapless spin systems. We find a gap that fully separates a series of generic, high "entanglement energy" levels, from a flat band of levels with specific multiplicities defining the ground state, and remains finite in the thermodynamic limit. We pick the appropriate set of quantum numbers and partition the system in this space, corresponding to a nonlocal real-space cut. Despite the Laughlin state being bulk gapped while the antiferromagnetic spin chain state is bulk gapless, we show that the S=1/2 Heisenberg antiferromagnet in one dimension has an entanglement spectrum almost identical to that of the Laughlin Fractional Quantum Hall state in two dimensions, revealing the similar field theory of their low-energy bulk and edge excitations, respectively. We also discuss the dimerization transition from entanglement gap scaling.
我们表明,纠缠谱可用于定义无能隙自旋系统中的非局域有序。我们发现了一个能隙,它完全将一系列通用的、高“纠缠能”能级与具有特定多重性的平坦能带分开,这些能级定义了基态,并且在热力学极限下保持有限。我们选择合适的量子数集,并在这个空间中对系统进行分区,对应于非局域实空间的切割。尽管 Laughlin 态在 bulk 是隙态而反铁磁自旋链态在 bulk 是无能隙的,但我们表明,一维的 S=1/2 海森堡反铁磁体的纠缠谱几乎与二维的 Laughlin 分数量子霍尔态相同,分别揭示了它们的低能体和边缘激发的相似场论。我们还讨论了从纠缠能隙标度的二聚化转变。