Suppr超能文献

非平衡玻色-爱因斯坦凝聚体中的超流性和临界速度。

Superfluidity and critical velocities in nonequilibrium Bose-Einstein condensates.

机构信息

Institute of Theoretical Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.

出版信息

Phys Rev Lett. 2010 Jul 9;105(2):020602. doi: 10.1103/PhysRevLett.105.020602. Epub 2010 Jul 8.

Abstract

We theoretically study the superfluidity properties of a nonequilibrium Bose-Einstein condensate of exciton polaritons in a semiconductor microcavity under incoherent pumping. The dynamics of the condensate is described at mean-field level in terms of a generalized Gross-Pitaevskii equation. The drag force on a small moving object and the onset of fringes in the density profile are shown to have a sharp threshold as a function of the velocity; a generalized Landau criterion is developed to explain this behavior in terms of the dispersion of elementary excitations. Metastability of supercurrents in multiply-connected geometries is shown to persist up to higher flow speeds.

摘要

我们从理论上研究了半导体微腔中非相干泵浦下激子极化激元的非平衡玻色-爱因斯坦凝聚体的超流性质。通过广义 Gross-Pitaevskii 方程对凝聚体的动力学进行了平均场水平的描述。结果表明,小移动物体上的拖曳力和密度分布中条纹的出现与速度有关,具有明显的阈值;发展了广义 Landau 准则,根据基本激发的色散来解释这种行为。在多连通几何形状中超流的亚稳性被证明可以持续到更高的流速。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验