Suppr超能文献

光的玻色-爱因斯坦凝聚:一般理论。

Bose-Einstein condensation of light: general theory.

作者信息

Sob'yanin Denis Nikolaevich

机构信息

Tamm Department of Theoretical Physics, Lebedev Physical Institute, Russian Academy of Sciences, Leninskii Prospekt 53, Moscow, 119991 Russia.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Aug;88(2):022132. doi: 10.1103/PhysRevE.88.022132. Epub 2013 Aug 19.

Abstract

A theory of Bose-Einstein condensation of light in a dye-filled optical microcavity is presented. The theory is based on the hierarchical maximum entropy principle and allows one to investigate the fluctuating behavior of the photon gas in the microcavity for all numbers of photons, dye molecules, and excitations at all temperatures, including the whole critical region. The master equation describing the interaction between photons and dye molecules in the microcavity is derived and the equivalence between the hierarchical maximum entropy principle and the master equation approach is shown. The cases of a fixed mean total photon number and a fixed total excitation number are considered, and a much sharper, nonparabolic onset of a macroscopic Bose-Einstein condensation of light in the latter case is demonstrated. The theory does not use the grand canonical approximation, takes into account the photon polarization degeneracy, and exactly describes the microscopic, mesoscopic, and macroscopic Bose-Einstein condensation of light. Under certain conditions, it predicts sub-Poissonian statistics of the photon condensate and the polarized photon condensate, and a universal relation takes place between the degrees of second-order coherence for these condensates. In the macroscopic case, there appear a sharp jump in the degrees of second-order coherence, a sharp jump and kink in the reduced standard deviations of the fluctuating numbers of photons in the polarized and whole condensates, and a sharp peak, a cusp, of the Mandel parameter for the whole condensate in the critical region. The possibility of nonclassical light generation in the microcavity with the photon Bose-Einstein condensate is predicted.

摘要

提出了一种关于染料填充光学微腔中光的玻色 - 爱因斯坦凝聚的理论。该理论基于分层最大熵原理,能够研究微腔中光子气体在所有光子数、染料分子数以及所有温度下(包括整个临界区域)的涨落行为。推导了描述微腔中光子与染料分子相互作用的主方程,并展示了分层最大熵原理与主方程方法之间的等价性。考虑了固定平均总光子数和固定总激发数的情况,并证明了在后一种情况下光的宏观玻色 - 爱因斯坦凝聚的起始更加尖锐且非抛物线形。该理论不使用巨正则近似,考虑了光子极化简并性,并精确描述了光的微观、介观和宏观玻色 - 爱因斯坦凝聚。在某些条件下,它预测了光子凝聚体和极化光子凝聚体的亚泊松统计,并且这些凝聚体的二阶相干度之间存在普遍关系。在宏观情况下,二阶相干度出现急剧跳跃,极化和整体凝聚体中光子涨落数的约化标准差出现急剧跳跃和扭结,并且在临界区域中整体凝聚体的曼德尔参数出现尖锐峰值、尖点。预测了具有光子玻色 - 爱因斯坦凝聚体的微腔中产生非经典光的可能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验