Física Teòrica: Informació i Fenòmens Quàntics, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
Phys Rev Lett. 2010 Jul 30;105(5):050503. doi: 10.1103/PhysRevLett.105.050503.
We propose a theory of adiabaticity in quantum markovian dynamics based on a decomposition of the Hilbert space induced by the asymptotic behavior of the Lindblad semigroup. A central idea of our approach is that the natural generalization of the concept of eigenspace of the Hamiltonian in the case of markovian dynamics is a noiseless subsystem with a minimal noisy cofactor. Unlike previous attempts to define adiabaticity for open systems, our approach deals exclusively with physical entities and provides a simple, intuitive picture at the Hilbert-space level, linking the notion of adiabaticity to the theory of noiseless subsystems. As two applications of our theory, we propose a general framework for decoherence-assisted computation in noiseless codes and a dissipation-driven approach to holonomic computation based on adiabatic dragging of subsystems that is generally not achievable by nondissipative means.
我们提出了一种基于由林德布劳德半群的渐近行为引起的希尔伯特空间分解的量子马尔可夫动力学绝热性理论。我们方法的一个核心思想是,在马尔可夫动力学的情况下,哈密顿量本征空间的自然推广是具有最小噪声伴随物的无噪声子系统。与先前尝试为开放系统定义绝热性的方法不同,我们的方法专门处理物理实体,并在希尔伯特空间级别提供了一个简单直观的图像,将绝热性的概念与无噪声子系统理论联系起来。作为我们理论的两个应用,我们提出了一种在无噪声码中进行辅助退相干计算的通用框架,以及一种基于子系统绝热拖动的耗散驱动的全同计算方法,这种方法通常无法通过非耗散手段实现。