Department of Geoscience, 1215 West Dayton Street, University of Wisconsin, Madison, WI 53706, USA.
J Colloid Interface Sci. 2010 Dec 15;352(2):327-36. doi: 10.1016/j.jcis.2010.08.057. Epub 2010 Aug 31.
We investigated electrostatic effects on the formation of multiple supported phospholipid bilayers (SPB) by varying the oxide substrate, ionic strength, the presence of divalent Ca(2+), and phospholipid (PL) headgroup charge. Whereas the current understanding of processes and forces controlling SPB formation is based primarily on studies involving planar substrates, we report results from experiments using aqueous suspensions of quartz (α-SiO(2)) and corundum (α-Al(2)O(3)) particles. Using fluorescent dye-loaded dipalmitoylphosphatidylcholine (DPPC) vesicles, we determined that the vesicles underwent oxide particle-induced rupture and formed supported planar bilayers rather than a supported vesicle layer. Adsorption isotherms of DPPC at pH 7.2 in solutions of varying ionic strength set by NaCl, and with or without 2 mM Ca(2+), support our hypotheses that van der Waals forces predominantly account for two DPPC bilayers, and that adsorption beyond the second bilayer occurs at low ionic strength due to extension of the electric double-layer near the oxide surface. In contrast, adsorption isotherms of anionic dipalmitoylphosphatidylserine (DPPS) and cationic dipalmitoylethylphosphatidylcholine (DPEPC) show that adsorption of highly charged bilayers is decreased or prevented altogether due to bilayer-oxide and/or bilayer-bilayer repulsion. Results have potential implications for biomedical, industrial, and environmental remediation applications involving SPBs and for proto-cell stability in origin-of-life hypotheses.
我们通过改变氧化物基底、离子强度、二价钙离子的存在以及磷脂(PL)头部基团的电荷来研究静电效应对多层支撑磷脂双层(SPB)形成的影响。虽然目前对于控制 SPB 形成的过程和力的理解主要基于涉及平面基底的研究,但我们报告了使用石英(α-SiO 2)和刚玉(α-Al 2 O 3)颗粒的水悬浮液进行实验的结果。使用荧光染料负载的二棕榈酰磷脂酰胆碱(DPPC)囊泡,我们确定囊泡经历了氧化物颗粒诱导的破裂并形成了支撑的平面双层,而不是支撑的囊泡层。在不同离子强度的 NaCl 溶液中,在 pH 7.2 下 DPPC 的吸附等温线,以及有无 2 mM Ca 2+,支持了我们的假设,即范德华力主要解释了两个 DPPC 双层,并且在低离子强度下由于氧化物表面附近的双电层延伸而发生第二层双层以外的吸附。相比之下,带负电荷的二棕榈酰磷脂酰丝氨酸(DPPS)和带正电荷的二棕榈酰乙基磷酸胆碱(DPEPC)的吸附等温线表明,由于双层-氧化物和/或双层-双层排斥,带高电荷双层的吸附减少或完全阻止。这些结果对于涉及 SPB 的生物医学、工业和环境修复应用以及起源生命假说中原始细胞的稳定性具有潜在的意义。