Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India.
Plant Physiol Biochem. 2010 Dec;48(12):909-30. doi: 10.1016/j.plaphy.2010.08.016. Epub 2010 Sep 15.
Various abiotic stresses lead to the overproduction of reactive oxygen species (ROS) in plants which are highly reactive and toxic and cause damage to proteins, lipids, carbohydrates and DNA which ultimately results in oxidative stress. The ROS comprises both free radical (O(2)(-), superoxide radicals; OH, hydroxyl radical; HO(2), perhydroxy radical and RO, alkoxy radicals) and non-radical (molecular) forms (H(2)O(2), hydrogen peroxide and (1)O(2), singlet oxygen). In chloroplasts, photosystem I and II (PSI and PSII) are the major sites for the production of (1)O(2) and O(2)(-). In mitochondria, complex I, ubiquinone and complex III of electron transport chain (ETC) are the major sites for the generation of O(2)(-). The antioxidant defense machinery protects plants against oxidative stress damages. Plants possess very efficient enzymatic (superoxide dismutase, SOD; catalase, CAT; ascorbate peroxidase, APX; glutathione reductase, GR; monodehydroascorbate reductase, MDHAR; dehydroascorbate reductase, DHAR; glutathione peroxidase, GPX; guaicol peroxidase, GOPX and glutathione-S- transferase, GST) and non-enzymatic (ascorbic acid, ASH; glutathione, GSH; phenolic compounds, alkaloids, non-protein amino acids and α-tocopherols) antioxidant defense systems which work in concert to control the cascades of uncontrolled oxidation and protect plant cells from oxidative damage by scavenging of ROS. ROS also influence the expression of a number of genes and therefore control the many processes like growth, cell cycle, programmed cell death (PCD), abiotic stress responses, pathogen defense, systemic signaling and development. In this review, we describe the biochemistry of ROS and their production sites, and ROS scavenging antioxidant defense machinery.
各种非生物胁迫导致植物中活性氧(ROS)的过度产生,ROS 具有高反应性和毒性,会对蛋白质、脂质、碳水化合物和 DNA 造成损伤,最终导致氧化应激。ROS 包括自由基(O(2)(-), 超氧自由基;OH,羟基自由基;HO(2),过羟自由基和 RO,烷氧基自由基)和非自由基(分子)形式(H(2)O(2),过氧化氢和 (1)O(2),单线态氧)。在叶绿体中,光系统 I 和 II(PSI 和 PSII)是 (1)O(2)和 O(2)(-)产生的主要部位。在线粒体中,电子传递链(ETC)的复合物 I、泛醌和复合物 III 是 O(2)(-)产生的主要部位。抗氧化防御机制保护植物免受氧化应激损伤。植物具有非常有效的酶促(超氧化物歧化酶,SOD;过氧化氢酶,CAT;抗坏血酸过氧化物酶,APX;谷胱甘肽还原酶,GR;单脱氢抗坏血酸还原酶,MDHAR;脱氢抗坏血酸还原酶,DHAR;谷胱甘肽过氧化物酶,GPX;愈创木酚过氧化物酶,GOPX 和谷胱甘肽-S-转移酶,GST)和非酶促(抗坏血酸,ASH;谷胱甘肽,GSH;酚类化合物,生物碱,非蛋白氨基酸和 α-生育酚)抗氧化防御系统,它们协同工作以控制失控氧化的级联反应,并通过清除 ROS 来保护植物细胞免受氧化损伤。ROS 还影响许多基因的表达,因此可以控制许多过程,如生长、细胞周期、程序性细胞死亡(PCD)、非生物胁迫反应、病原体防御、系统信号和发育。在这篇综述中,我们描述了 ROS 的生物化学及其产生部位,以及 ROS 清除抗氧化防御机制。