Electrical Engineering Department, University of New Brunswick, Fredericton, New Brunswick, Canada; Institute of Biomedical Engineering, University of New Brunswick, Fredericton, New Brunswick, Canada.
J Electromyogr Kinesiol. 1991 Dec;1(4):229-36. doi: 10.1016/1050-6411(91)90009-T.
An alternate approach to deriving control for multidegree of freedom prosthetic arms is considered. By analyzing a single-channel myoelectric signal (MES), we can extract information that can be used to identify different contraction patterns in the upper arm. These contraction patterns are generated by subjects without previous training and are naturally associated with specific functions. Using a set of normalized MES spectral features, we can identify contraction patterns for four arm functions, specifically extension and flexion of the elbow and pronation and supination of the forearm. Performing identification independent of signal power is advantageous because this can then be used as a means for deriving proportional rate control for a prosthesis. An artificial neural network implementation is applied in the classification task. By using three single-layer perceptron networks, the MES is classified, with the spectral representations as input features. Trials performed on five subjects with normal limbs resulted in an average classification performance level of 85% for the four functions.
我们考虑了一种用于多自由度假肢的控制推导的替代方法。通过分析单个通道肌电信号(MES),我们可以提取可用于识别上臂中不同收缩模式的信息。这些收缩模式是由未经训练的受试者产生的,并且与特定功能自然相关。使用一组归一化的 MES 频谱特征,我们可以识别四个手臂功能的收缩模式,分别是肘部的伸展和弯曲以及前臂的内旋和外旋。执行与信号功率无关的识别是有利的,因为这可以用作假肢的比例速率控制的手段。人工神经网络实现应用于分类任务。通过使用三个单层感知器网络,将 MES 作为输入特征进行分类。在五个正常肢体的受试者上进行的试验,对于四个功能的平均分类性能水平达到了 85%。