Suppr超能文献

核因子-κB(NF-κB)受体激活剂(RANK)胞质 IVVY535-538 基序在肿瘤坏死因子-α(TNF)介导的破骨细胞生成中起关键作用。

Receptor activator of NF-{kappa}B (RANK) cytoplasmic IVVY535-538 motif plays an essential role in tumor necrosis factor-{alpha} (TNF)-mediated osteoclastogenesis.

机构信息

Department of Pathology, University of Alabama at Birmingham, Alabama 35294, USA.

出版信息

J Biol Chem. 2010 Nov 26;285(48):37427-35. doi: 10.1074/jbc.M110.149484. Epub 2010 Sep 24.

Abstract

Tumor necrosis factor-α (TNF) enhances osteoclast formation and activity leading to bone loss in various pathological conditions, but its precise role in osteoclastogenesis remains controversial. Although several groups showed that TNF can promote osteoclastogenesis independently of the receptor activator of NF-κB (RANK) ligand (RANKL), others demonstrated that TNF-mediated osteoclastogenesis needs permissive levels of RANKL. Here, we independently reveal that although TNF cannot stimulate osteoclastogenesis on bone slices, it can induce the formation of functional osteoclasts on bone slices in the presence of permissive levels of RANKL or from bone marrow macrophages (BMMs) pretreated by RANKL. TNF can still promote the formation of functional osteoclasts 2 days after transient RANKL pretreatment. These data have confirmed that TNF-mediated osteoclastogenesis requires priming of BMMs by RANKL. Moreover, we investigated the molecular mechanism underlying the dependence of TNF-mediated osteoclastogenesis on RANKL. RANK, the receptor for RANKL, contains an IVVY(535-538) motif that has been shown to play a vital role in osteoclastogenesis by committing BMMs to the osteoclast lineage. We show that TNF-induced osteoclastogenesis depends on RANKL to commit BMMs to the osteoclast lineage and RANKL regulates the lineage commitment through the IVVY motif. Mechanistically, the IVVY motif controls the lineage commitment by reprogramming osteoclast genes into an inducible state in which they can be activated by TNF. Our findings not only provide important mechanistic insights into the action of RANKL in TNF-mediated osteoclastogenesis but also establish that the IVVY motif may serve as an attractive therapeutic target for bone loss in various bone disorders.

摘要

肿瘤坏死因子-α(TNF)增强破骨细胞的形成和活性,导致各种病理条件下的骨丢失,但它在破骨细胞发生中的精确作用仍存在争议。尽管有几个小组表明 TNF 可以独立于核因子-κB 受体激活剂(RANK)配体(RANKL)促进破骨细胞发生,但其他人表明 TNF 介导的破骨细胞发生需要 RANKL 的许可水平。在这里,我们独立地揭示了尽管 TNF 不能在骨切片上刺激破骨细胞发生,但它可以在 RANKL 的许可水平或经 RANKL 预处理的骨髓巨噬细胞(BMM)存在的情况下诱导骨切片上功能性破骨细胞的形成。TNF 仍然可以在短暂的 RANKL 预处理后 2 天促进功能性破骨细胞的形成。这些数据证实了 TNF 介导的破骨细胞发生需要 RANKL 对 BMM 进行初始刺激。此外,我们研究了 TNF 介导的破骨细胞发生对 RANKL 的依赖性的分子机制。RANKL 的受体 RANK 包含一个 IVVY(535-538)基序,该基序已被证明在通过将 BMM 定向到破骨细胞谱系来促进破骨细胞发生方面发挥重要作用。我们表明,TNF 诱导的破骨细胞发生依赖于 RANKL 将 BMM 定向到破骨细胞谱系,并且 RANKL 通过 IVVY 基序调节谱系定向。从机制上讲,IVVY 基序通过将破骨细胞基因重新编程为可诱导状态来控制谱系定向,在这种状态下,它们可以被 TNF 激活。我们的发现不仅为 RANKL 在 TNF 介导的破骨细胞发生中的作用提供了重要的机制见解,而且还确立了 IVVY 基序可能成为各种骨疾病中骨丢失的有吸引力的治疗靶点。

相似文献

2
Molecular basis of requirement of receptor activator of nuclear factor κB signaling for interleukin 1-mediated osteoclastogenesis.
J Biol Chem. 2012 May 4;287(19):15728-38. doi: 10.1074/jbc.M111.296228. Epub 2012 Mar 13.
4
Specific RANK Cytoplasmic Motifs Drive Osteoclastogenesis.
J Bone Miner Res. 2019 Oct;34(10):1938-1951. doi: 10.1002/jbmr.3810. Epub 2019 Aug 2.
7
C/EBPα and PU.1 exhibit different responses to RANK signaling for osteoclastogenesis.
Bone. 2018 Feb;107:104-114. doi: 10.1016/j.bone.2017.05.009. Epub 2017 Oct 12.
8
TNF‑α and RANKL promote osteoclastogenesis by upregulating RANK via the NF‑κB pathway.
Mol Med Rep. 2018 May;17(5):6605-6611. doi: 10.3892/mmr.2018.8698. Epub 2018 Mar 7.
10
Cell adhesion signaling regulates RANK expression in osteoclast precursors.
PLoS One. 2012;7(11):e48795. doi: 10.1371/journal.pone.0048795. Epub 2012 Nov 6.

引用本文的文献

2
The molecular mechanism of platelet lysate promotes transformation of non-union cells into osteoblasts.
Transl Cancer Res. 2020 Mar;9(3):1985-1992. doi: 10.21037/tcr.2019.12.95.
3
Major vault protein (MVP) negatively regulates osteoclastogenesis via calcineurin-NFATc1 pathway inhibition.
Theranostics. 2021 May 24;11(15):7247-7261. doi: 10.7150/thno.58468. eCollection 2021.
4
Specific RANK Cytoplasmic Motifs Drive Osteoclastogenesis.
J Bone Miner Res. 2019 Oct;34(10):1938-1951. doi: 10.1002/jbmr.3810. Epub 2019 Aug 2.
5
Cyclophosphamide causes osteoporosis in C57BL/6 male mice: suppressive effects of cyclophosphamide on osteoblastogenesis and osteoclastogenesis.
Oncotarget. 2017 Sep 18;8(58):98163-98183. doi: 10.18632/oncotarget.21000. eCollection 2017 Nov 17.
7
C/EBPα and PU.1 exhibit different responses to RANK signaling for osteoclastogenesis.
Bone. 2018 Feb;107:104-114. doi: 10.1016/j.bone.2017.05.009. Epub 2017 Oct 12.
9
Cellular and Molecular Pathways Leading to External Root Resorption.
J Dent Res. 2017 Feb;96(2):145-152. doi: 10.1177/0022034516677539. Epub 2016 Nov 5.

本文引用的文献

1
Selective inhibition of RANK blocks osteoclast maturation and function and prevents bone loss in mice.
J Clin Invest. 2009 Apr;119(4):813-25. doi: 10.1172/JCI36809. Epub 2009 Mar 2.
2
Human osteoclast-poor osteopetrosis with hypogammaglobulinemia due to TNFRSF11A (RANK) mutations.
Am J Hum Genet. 2008 Jul;83(1):64-76. doi: 10.1016/j.ajhg.2008.06.015.
3
Influence of RANKL inhibition on immune system in the treatment of bone diseases.
Joint Bone Spine. 2008 Jan;75(1):5-10. doi: 10.1016/j.jbspin.2007.05.004. Epub 2007 Aug 29.
5
Regulatory roles and molecular signaling of TNF family members in osteoclasts.
Gene. 2005 Apr 25;350(1):1-13. doi: 10.1016/j.gene.2005.01.014.
10
Genetic regulation of osteoclast development and function.
Nat Rev Genet. 2003 Aug;4(8):638-49. doi: 10.1038/nrg1122.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验