US Geological Survey, Menlo Park, California 94025, USA.
Integr Environ Assess Manag. 2010 Oct;6(4):685-710. doi: 10.1002/ieam.101.
The main route of exposure for selenium (Se) is dietary, yet regulations lack biologically based protocols for evaluations of risk. We propose here an ecosystem-scale model that conceptualizes and quantifies the variables that determine how Se is processed from water through diet to predators. This approach uses biogeochemical and physiological factors from laboratory and field studies and considers loading, speciation, transformation to particulate material, bioavailability, bioaccumulation in invertebrates, and trophic transfer to predators. Validation of the model is through data sets from 29 historic and recent field case studies of Se-exposed sites. The model links Se concentrations across media (water, particulate, tissue of different food web species). It can be used to forecast toxicity under different management or regulatory proposals or as a methodology for translating a fish-tissue (or other predator tissue) Se concentration guideline to a dissolved Se concentration. The model illustrates some critical aspects of implementing a tissue criterion: 1) the choice of fish species determines the food web through which Se should be modeled, 2) the choice of food web is critical because the particulate material to prey kinetics of bioaccumulation differs widely among invertebrates, 3) the characterization of the type and phase of particulate material is important to quantifying Se exposure to prey through the base of the food web, and 4) the metric describing partitioning between particulate material and dissolved Se concentrations allows determination of a site-specific dissolved Se concentration that would be responsible for that fish body burden in the specific environment. The linked approach illustrates that environmentally safe dissolved Se concentrations will differ among ecosystems depending on the ecological pathways and biogeochemical conditions in that system. Uncertainties and model sensitivities can be directly illustrated by varying exposure scenarios based on site-specific knowledge. The model can also be used to facilitate site-specific regulation and to present generic comparisons to illustrate limitations imposed by ecosystem setting and inhabitants. Used optimally, the model provides a tool for framing a site-specific ecological problem or occurrence of Se exposure, quantify exposure within that ecosystem, and narrow uncertainties about how to protect it by understanding the specifics of the underlying system ecology, biogeochemistry, and hydrology.
硒(Se)的主要暴露途径是饮食,但法规缺乏基于生物学的风险评估协议。我们在这里提出了一种生态系统规模的模型,该模型概念化并量化了决定硒如何从水通过饮食传递给捕食者的变量。这种方法利用了实验室和野外研究中的生物地球化学和生理学因素,并考虑了负载、形态、转化为颗粒物质、生物利用度、无脊椎动物体内的生物积累以及向捕食者的营养转移。该模型通过 29 个历史和近期暴露硒的现场案例研究数据集进行了验证。该模型将不同介质(水、颗粒、不同食物网物种的组织)中的硒浓度联系起来。它可用于预测不同管理或监管建议下的毒性,也可作为将鱼类组织(或其他捕食者组织)硒浓度指导值转换为溶解硒浓度的方法。该模型说明了实施组织标准的一些关键方面:1)鱼类物种的选择决定了应该通过哪种食物网来建模硒,2)食物网的选择至关重要,因为不同无脊椎动物之间的颗粒物质到猎物的生物积累动力学差异很大,3)颗粒物质的类型和相的特征对于量化通过食物网底部暴露于猎物的硒很重要,4)描述颗粒物质和溶解硒浓度之间分配的度量允许确定特定环境中导致特定鱼类体内负荷的特定溶解硒浓度。这种关联方法表明,取决于该系统中的生态途径和生物地球化学条件,环境安全的溶解硒浓度将在不同生态系统之间有所不同。基于特定地点的知识,可以通过改变暴露情景来直接说明不确定性和模型敏感性。该模型还可用于促进特定地点的监管,并通过展示通用比较来说明生态系统设置和居民施加的限制。最佳使用时,该模型提供了一种工具,可以构建特定地点的生态问题或硒暴露事件,量化该生态系统内的暴露情况,并通过了解基础系统生态学、生物地球化学和水文学的具体情况,缩小保护它的不确定性。