Wildlife and Landscape Science Directorate, Science and Technology, Branch, Environment Canada, Carleton University, Ottawa, ON, Canada.
Sci Total Environ. 2010 Jul 1;408(15):2995-3043. doi: 10.1016/j.scitotenv.2009.10.038. Epub 2009 Nov 12.
Persistent organic pollutants (POPs) encompass an array of anthropogenic organic and elemental substances and their degradation and metabolic byproducts that have been found in the tissues of exposed animals, especially POPs categorized as organohalogen contaminants (OHCs). OHCs have been of concern in the circumpolar arctic for decades. For example, as a consequence of bioaccumulation and in some cases biomagnification of legacy (e.g., chlorinated PCBs, DDTs and CHLs) and emerging (e.g., brominated flame retardants (BFRs) and in particular polybrominated diphenyl ethers (PBDEs) and perfluorinated compounds (PFCs) including perfluorooctane sulfonate (PFOS) and perfluorooctanic acid (PFOA) found in Arctic biota and humans. Of high concern are the potential biological effects of these contaminants in exposed Arctic wildlife and fish. As concluded in the last review in 2004 for the Arctic Monitoring and Assessment Program (AMAP) on the effects of POPs in Arctic wildlife, prior to 1997, biological effects data were minimal and insufficient at any level of biological organization. The present review summarizes recent studies on biological effects in relation to OHC exposure, and attempts to assess known tissue/body compartment concentration data in the context of possible threshold levels of effects to evaluate the risks. This review concentrates mainly on post-2002, new OHC effects data in Arctic wildlife and fish, and is largely based on recently available effects data for populations of several top trophic level species, including seabirds (e.g., glaucous gull (Larus hyperboreus)), polar bears (Ursus maritimus), polar (Arctic) fox (Vulpes lagopus), and Arctic charr (Salvelinus alpinus), as well as semi-captive studies on sled dogs (Canis familiaris). Regardless, there remains a dearth of data on true contaminant exposure, cause-effect relationships with respect to these contaminant exposures in Arctic wildlife and fish. Indications of exposure effects are largely based on correlations between biomarker endpoints (e.g., biochemical processes related to the immune and endocrine system, pathological changes in tissues and reproduction and development) and tissue residue levels of OHCs (e.g., PCBs, DDTs, CHLs, PBDEs and in a few cases perfluorinated carboxylic acids (PFCAs) and perfluorinated sulfonates (PFSAs)). Some exceptions include semi-field studies on comparative contaminant effects of control and exposed cohorts of captive Greenland sled dogs, and performance studies mimicking environmentally relevant PCB concentrations in Arctic charr. Recent tissue concentrations in several arctic marine mammal species and populations exceed a general threshold level of concern of 1 part-per-million (ppm), but a clear evidence of a POP/OHC-related stress in these populations remains to be confirmed. There remains minimal evidence that OHCs are having widespread effects on the health of Arctic organisms, with the possible exception of East Greenland and Svalbard polar bears and Svalbard glaucous gulls. However, the true (if any real) effects of POPs in Arctic wildlife have to be put into the context of other environmental, ecological and physiological stressors (both anthropogenic and natural) that render an overall complex picture. For instance, seasonal changes in food intake and corresponding cycles of fattening and emaciation seen in Arctic animals can modify contaminant tissue distribution and toxicokinetics (contaminant deposition, metabolism and depuration). Also, other factors, including impact of climate change (seasonal ice and temperature changes, and connection to food web changes, nutrition, etc. in exposed biota), disease, species invasion and the connection to disease resistance will impact toxicant exposure. Overall, further research and better understanding of POP/OHC impact on animal performance in Arctic biota are recommended. Regardless, it could be argued that Arctic wildlife and fish at the highest potential risk of POP/OHC exposure and mediated effects are East Greenland, Svalbard and (West and South) Hudson Bay polar bears, Alaskan and Northern Norway killer whales, several species of gulls and other seabirds from the Svalbard area, Northern Norway, East Greenland, the Kara Sea and/or the Canadian central high Arctic, East Greenland ringed seal and a few populations of Arctic charr and Greenland shark.
持久性有机污染物 (POPs) 涵盖了一系列人为有机和元素物质及其降解和代谢产物,这些物质在暴露动物的组织中被发现,特别是被归类为有机卤代污染物 (OHC) 的 POPs。几十年来,OHC 一直是环极北极地区关注的问题。例如,由于生物积累和在某些情况下的生物放大作用,传统的(例如氯化多氯联苯、滴滴涕和氯代烃)和新兴的(例如溴化阻燃剂 (BFR),特别是多溴二苯醚 (PBDE) 和全氟化合物 (PFC),包括全氟辛烷磺酸 (PFOS) 和全氟辛酸 (PFOA),在北极生物群和人类中被发现。人们高度关注这些污染物对暴露于北极野生动物和鱼类的潜在生物学影响。正如 2004 年北极监测和评估方案 (AMAP) 对北极野生动物中持久性有机污染物影响的最后一次审查所总结的那样,在 1997 年之前,生物效应数据很少,在任何生物组织水平上都不足。本综述总结了最近关于 OHC 暴露与生物效应的研究,并试图根据可能的效应阈值水平评估已知的组织/体腔浓度数据,以评估风险。本综述主要集中在 2002 年之后北极野生动物和鱼类的新 OHC 效应数据上,并且主要基于最近获得的几个顶级营养级物种种群的效应数据,包括海鸟(例如,北方海鹦 (Larus hyperboreus))、北极熊 (Ursus maritimus)、北极狐 (Vulpes lagopus) 和北极鳕鱼 (Salvelinus alpinus),以及对雪橇犬 (Canis familiaris) 的半圈养研究。尽管如此,关于北极野生动物和鱼类真正的污染物暴露以及与这些污染物暴露有关的因果关系的数据仍然缺乏。暴露效应的迹象主要基于生物标志物终点(例如与免疫系统和内分泌系统相关的生化过程、组织中的病理变化以及繁殖和发育)与 OHC 组织残留水平之间的相关性(例如 PCB、滴滴涕、氯代烃、PBDEs,在少数情况下还有全氟羧酸 (PFCAs) 和全氟磺酸 (PFSAs))。一些例外包括对格陵兰雪橇犬对照和暴露队列的比较污染物效应的半现场研究,以及在北极鳕鱼中模拟环境相关 PCB 浓度的性能研究。几种北极海洋哺乳动物物种和种群的近期组织浓度超过了 1 百万分之 1 (ppm) 的一般关注阈值水平,但这些种群中与 POP/OHC 相关的压力的明确证据仍有待证实。几乎没有证据表明 OHC 对北极生物的健康有广泛的影响,除了东格陵兰和斯瓦尔巴北极熊以及斯瓦尔巴特海鹦。然而,持久性有机污染物在北极野生动物中的真正(如果有任何真正的)影响必须考虑到其他环境、生态和生理压力源(包括人为和自然的),这些压力源构成了一个复杂的整体情况。例如,北极动物季节性食物摄入的变化以及随之而来的肥胖和消瘦周期会改变污染物的组织分布和毒物动力学(污染物沉积、代谢和消除)。此外,包括气候变化(季节性冰和温度变化,以及与受影响生物群食物网变化、营养等的联系)、疾病、物种入侵以及与疾病抵抗力的联系在内的其他因素也会影响有毒物质的暴露。总体而言,建议进一步研究和更好地了解持久性有机污染物/OHC 对北极生物群动物性能的影响。尽管如此,可以说,东格陵兰、斯瓦尔巴特(以及(西和南)哈德逊湾)北极熊、阿拉斯加和挪威北部的虎鲸、斯瓦尔巴特地区、挪威北部、东格陵兰、卡拉海和/或加拿大中北极地区的几种海鸥和其他海鸟、东格陵兰环斑海豹以及一些北极鳕鱼和格陵兰鲨鱼种群是最有可能受到持久性有机污染物/OHC 暴露和介导效应影响的北极野生动物和鱼类。