Biological & Agricultural Engineering Department, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA.
Nanomedicine (Lond). 2010 Sep;5(7):1037-50. doi: 10.2217/nnm.10.68.
AIMS: Poly(lactic-co-glycolic) acid (PLGA) nanoparticles containing the hydrophobic antifungal itraconazole (ITZ) were developed to address the need for more effective means of treating fungal infections. MATERIALS & METHODS: PLGA-ITZ nanoparticles were synthesized using an oil-in-water emulsion evaporation method. Nanoparticle morphology (studied by transmission electron microscopy), size zeta potential (dynamic light scattering), encapsulation efficiency (UV-visible spectroscopy), release profile and antifungal activity were characterized. RESULTS: PLGA-ITZ nanoparticles (of 220 nm in diameter) completely inhibited Aspergillus flavus growth over 11 days at 0.03 mg/ml ITZ; a similar effect was achieved at ×100 ITZ concentrations (3 mg/ml) in emulsified form. The ITZ in water formulation had the least antifungal effect, inhibiting growth for only 2 days at 3 mg/ml ITZ. CONCLUSION: This system is envisioned to increase bioavailability of ITZ by improving aqueous dispersibility and increasing antifungal penetration, thereby increasing antifungal activity of the entrapped drug.
目的:聚(乳酸-共-乙醇酸)(PLGA)载有疏水性抗真菌药物伊曲康唑(ITZ)的纳米粒被开发出来,以满足对更有效治疗真菌感染的方法的需求。
材料与方法:采用油包水乳液蒸发法合成 PLGA-ITZ 纳米粒。通过透射电子显微镜研究纳米粒形态、粒径、ζ 电位(动态光散射)、包封效率(紫外可见分光光度法)、释放曲线和抗真菌活性。
结果:PLGA-ITZ 纳米粒(直径 220nm)在 0.03mg/ml ITZ 浓度下完全抑制黄曲霉生长超过 11 天;在乳化形式下,相同浓度的 ITZ(3mg/ml)也具有类似的效果。水配方中的 ITZ 抗真菌效果最差,在 3mg/ml ITZ 浓度下仅抑制生长 2 天。
结论:该系统通过提高水的分散性和增加抗真菌穿透性,从而提高包封药物的抗真菌活性,预计可增加 ITZ 的生物利用度。
Nanomedicine (Lond). 2010-9
Nanomedicine (Lond). 2011-6-9
J Microencapsul. 2012-8-15
Int J Nanomedicine. 2013-11-21
Int J Nanomedicine. 2015-2-17
J Nanosci Nanotechnol. 2011-3
AAPS PharmSciTech. 2003-12-31
Curr Res Microb Sci. 2025-1-11
Bioengineering (Basel). 2022-8-30
J Multidiscip Healthc. 2022-8-27
Polymers (Basel). 2016-3-24
Int J Nanomedicine. 2015-2-17
Int J Nanomedicine. 2013-11-21