Suppr超能文献

在肿瘤进展过程中积累的驱动突变和乘客突变。

Accumulation of driver and passenger mutations during tumor progression.

机构信息

Program for Evolutionary Dynamics, Harvard University, Cambridge, MA 02138, USA.

出版信息

Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18545-50. doi: 10.1073/pnas.1010978107. Epub 2010 Sep 27.

Abstract

Major efforts to sequence cancer genomes are now occurring throughout the world. Though the emerging data from these studies are illuminating, their reconciliation with epidemiologic and clinical observations poses a major challenge. In the current study, we provide a mathematical model that begins to address this challenge. We model tumors as a discrete time branching process that starts with a single driver mutation and proceeds as each new driver mutation leads to a slightly increased rate of clonal expansion. Using the model, we observe tremendous variation in the rate of tumor development-providing an understanding of the heterogeneity in tumor sizes and development times that have been observed by epidemiologists and clinicians. Furthermore, the model provides a simple formula for the number of driver mutations as a function of the total number of mutations in the tumor. Finally, when applied to recent experimental data, the model allows us to calculate the actual selective advantage provided by typical somatic mutations in human tumors in situ. This selective advantage is surprisingly small--0.004 ± 0.0004--and has major implications for experimental cancer research.

摘要

目前,全世界都在投入大量精力对癌症基因组进行测序。虽然这些研究中的新兴数据具有启发性,但将它们与流行病学和临床观察结果协调一致是一项重大挑战。在本研究中,我们提供了一个数学模型,该模型开始解决这一挑战。我们将肿瘤建模为一个离散时间分支过程,从单个驱动突变开始,然后随着每个新的驱动突变导致克隆扩展率略有增加而进行。使用该模型,我们观察到肿瘤发展的速度存在巨大差异,从而为流行病学和临床医生观察到的肿瘤大小和发展时间的异质性提供了理解。此外,该模型还提供了一个简单的公式,可根据肿瘤中的总突变数来计算驱动突变的数量。最后,当应用于最近的实验数据时,该模型使我们能够计算出人类肿瘤原位中典型体细胞突变提供的实际选择优势。这种选择优势非常小,仅为 0.004±0.0004,对实验癌症研究具有重大意义。

相似文献

1
Accumulation of driver and passenger mutations during tumor progression.
Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18545-50. doi: 10.1073/pnas.1010978107. Epub 2010 Sep 27.
2
Tug-of-war between driver and passenger mutations in cancer and other adaptive processes.
Proc Natl Acad Sci U S A. 2014 Oct 21;111(42):15138-43. doi: 10.1073/pnas.1404341111. Epub 2014 Oct 2.
3
Molecular biology of colorectal cancer.
Curr Probl Cancer. 1997 Sep-Oct;21(5):233-300. doi: 10.1016/s0147-0272(97)80003-7.
5
Multistep carcinogenesis in colorectal cancers.
Southeast Asian J Trop Med Public Health. 1995;26 Suppl 1:190-6.
7
SomInaClust: detection of cancer genes based on somatic mutation patterns of inactivation and clustering.
BMC Bioinformatics. 2015 Apr 23;16:125. doi: 10.1186/s12859-015-0555-7.
9
Revisiting the tumorigenesis timeline with a data-driven generative model.
Proc Natl Acad Sci U S A. 2020 Jan 14;117(2):857-864. doi: 10.1073/pnas.1914589117. Epub 2019 Dec 27.
10
Desmoid Tumors in Familial Adenomatous Polyposis.
Anticancer Res. 2017 Jul;37(7):3357-3366. doi: 10.21873/anticanres.11702.

引用本文的文献

1
Single-cell mutational burden distributions in birth-death processes.
PLoS Comput Biol. 2025 Jul 7;21(7):e1013241. doi: 10.1371/journal.pcbi.1013241. eCollection 2025 Jul.
2
Current Advances in the Diagnosis and Treatment of Major Myeloproliferative Neoplasms.
Cancers (Basel). 2025 May 30;17(11):1834. doi: 10.3390/cancers17111834.
3
HPRT Mutation Assay for Chinese Hamster Ovary Cells.
Methods Mol Biol. 2025;2933:93-97. doi: 10.1007/978-1-0716-4574-1_13.
4
The Emerging Oncogenic Role of RARγ: From Stem Cell Regulation to a Potential Cancer Therapy.
Int J Mol Sci. 2025 May 3;26(9):4357. doi: 10.3390/ijms26094357.
5
Evolutionary paths towards metastasis.
Nat Rev Cancer. 2025 Apr 22. doi: 10.1038/s41568-025-00814-x.
6
Genetic Ancestry and Lung Cancer in Latin American Patients: A Crucial Step for Understanding a Diverse Population.
Clin Lung Cancer. 2025 Jul;26(5):e342-e352. doi: 10.1016/j.cllc.2025.03.004. Epub 2025 Mar 13.
7
Tumor-Agnostic Therapies in Practice: Challenges, Innovations, and Future Perspectives.
Cancers (Basel). 2025 Feb 26;17(5):801. doi: 10.3390/cancers17050801.
8
Bone Marrow Niche in Cardiometabolic Disease: Mechanisms and Therapeutic Potential.
Circ Res. 2025 Jan 31;136(3):325-353. doi: 10.1161/CIRCRESAHA.124.323778. Epub 2025 Jan 30.
10
CD4FOXP3Exon2 regulatory T cell frequency predicts breast cancer prognosis and survival.
Sci Adv. 2025 Jan 17;11(3):eadr7934. doi: 10.1126/sciadv.adr7934. Epub 2025 Jan 15.

本文引用的文献

1
COSMIC (the Catalogue of Somatic Mutations in Cancer): a resource to investigate acquired mutations in human cancer.
Nucleic Acids Res. 2010 Jan;38(Database issue):D652-7. doi: 10.1093/nar/gkp995. Epub 2009 Nov 11.
2
Evolution of resistance and progression to disease during clonal expansion of cancer.
Theor Popul Biol. 2010 Feb;77(1):42-8. doi: 10.1016/j.tpb.2009.10.008. Epub 2009 Nov 5.
3
The Universal Protein Resource (UniProt) in 2010.
Nucleic Acids Res. 2010 Jan;38(Database issue):D142-8. doi: 10.1093/nar/gkp846. Epub 2009 Oct 20.
4
Recurring mutations found by sequencing an acute myeloid leukemia genome.
N Engl J Med. 2009 Sep 10;361(11):1058-66. doi: 10.1056/NEJMoa0903840. Epub 2009 Aug 5.
5
Cancer-specific high-throughput annotation of somatic mutations: computational prediction of driver missense mutations.
Cancer Res. 2009 Aug 15;69(16):6660-7. doi: 10.1158/0008-5472.CAN-09-1133. Epub 2009 Aug 4.
6
The breast cancer somatic 'muta-ome': tackling the complexity.
Breast Cancer Res. 2009;11(2):301. doi: 10.1186/bcr2236. Epub 2009 Mar 30.
7
Sequence-based advances in the definition of cancer-associated gene mutations.
Curr Opin Oncol. 2009 Jan;21(1):47-52. doi: 10.1097/CCO.0b013e32831de4b9.
8
DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome.
Nature. 2008 Nov 6;456(7218):66-72. doi: 10.1038/nature07485.
9
Age-specific incidence of cancer: Phases, transitions, and biological implications.
Proc Natl Acad Sci U S A. 2008 Oct 21;105(42):16284-9. doi: 10.1073/pnas.0801151105. Epub 2008 Oct 20.
10
Core signaling pathways in human pancreatic cancers revealed by global genomic analyses.
Science. 2008 Sep 26;321(5897):1801-6. doi: 10.1126/science.1164368. Epub 2008 Sep 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验