Program for Evolutionary Dynamics, Harvard University, Cambridge, MA 02138, USA.
Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18545-50. doi: 10.1073/pnas.1010978107. Epub 2010 Sep 27.
Major efforts to sequence cancer genomes are now occurring throughout the world. Though the emerging data from these studies are illuminating, their reconciliation with epidemiologic and clinical observations poses a major challenge. In the current study, we provide a mathematical model that begins to address this challenge. We model tumors as a discrete time branching process that starts with a single driver mutation and proceeds as each new driver mutation leads to a slightly increased rate of clonal expansion. Using the model, we observe tremendous variation in the rate of tumor development-providing an understanding of the heterogeneity in tumor sizes and development times that have been observed by epidemiologists and clinicians. Furthermore, the model provides a simple formula for the number of driver mutations as a function of the total number of mutations in the tumor. Finally, when applied to recent experimental data, the model allows us to calculate the actual selective advantage provided by typical somatic mutations in human tumors in situ. This selective advantage is surprisingly small--0.004 ± 0.0004--and has major implications for experimental cancer research.
目前,全世界都在投入大量精力对癌症基因组进行测序。虽然这些研究中的新兴数据具有启发性,但将它们与流行病学和临床观察结果协调一致是一项重大挑战。在本研究中,我们提供了一个数学模型,该模型开始解决这一挑战。我们将肿瘤建模为一个离散时间分支过程,从单个驱动突变开始,然后随着每个新的驱动突变导致克隆扩展率略有增加而进行。使用该模型,我们观察到肿瘤发展的速度存在巨大差异,从而为流行病学和临床医生观察到的肿瘤大小和发展时间的异质性提供了理解。此外,该模型还提供了一个简单的公式,可根据肿瘤中的总突变数来计算驱动突变的数量。最后,当应用于最近的实验数据时,该模型使我们能够计算出人类肿瘤原位中典型体细胞突变提供的实际选择优势。这种选择优势非常小,仅为 0.004±0.0004,对实验癌症研究具有重大意义。