Christopher Bond Life Sciences Center, Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri 65211, USA.
J Biol Chem. 2010 Dec 3;285(49):38700-9. doi: 10.1074/jbc.M110.153783. Epub 2010 Sep 27.
The N348I mutation at the connection subdomain of HIV-1 reverse transcriptase (RT) confers clinically significant resistance to both nucleoside and non-nucleoside RT inhibitors (NNRTIs) by mechanisms that are not well understood. We used transient kinetics to characterize the enzymatic properties of N348I RT and determine the biochemical mechanism of resistance to the NNRTI nevirapine (NVP). We demonstrate that changes distant from the NNRTI binding pocket decrease inhibitor binding (increase K(d)(-NVP)) by primarily decreasing the association rate of the inhibitor (k(on-NVP)). We characterized RTs mutated in either p66 (p66(N348I)/p51(WT)), p51 (p66(WT)/p51(N348I)), or both subunits (p66(N348I)/p51(N348I)). Mutation in either subunit caused NVP resistance during RNA-dependent and DNA-dependent DNA polymerization. Mutation in p66 alone (p66(N348I)/p51(WT)) caused NVP resistance without significantly affecting RNase H activity, whereas mutation in p51 caused NVP resistance and impaired RNase H, demonstrating that NVP resistance may occur independently from defects in RNase H function. Mutation in either subunit improved affinity for nucleic acid and enhanced processivity of DNA synthesis. Surprisingly, mutation in either subunit decreased catalytic rates (k(pol)) of p66(N348I)/p51(N348I), p66(N348I)/p51(WT), and p66(WT)/p51(N348I) without significantly affecting affinity for deoxynucleotide substrate (K(d)(-dNTP)). Hence, in addition to providing structural integrity for the heterodimer, p51 is critical for fine tuning catalytic turnover, RNase H processing, and drug resistance. In conclusion, connection subdomain mutation N348I decreases catalytic efficiency and causes in vitro resistance to NVP by decreasing inhibitor binding.
HIV-1 逆转录酶(RT)连接亚结构域的 N348I 突变通过尚未完全了解的机制,导致核苷和非核苷 RT 抑制剂(NNRTIs)均产生临床显著的耐药性。我们使用瞬态动力学来描述 N348I RT 的酶学特性,并确定奈韦拉平(NVP)这种 NNRTI 的耐药生化机制。我们证明,远离 NNRTI 结合口袋的突变通过主要降低抑制剂的结合速率(k(on-NVP)),从而降低抑制剂的结合(增加 K(d)(-NVP))。我们对突变于 p66(p66(N348I)/p51(WT))、p51(p66(WT)/p51(N348I))或两个亚基(p66(N348I)/p51(N348I))的 RT 进行了特征描述。在 RNA 依赖性和 DNA 依赖性 DNA 聚合过程中,任一亚基的突变均可导致 NVP 耐药。只有 p66 的突变(p66(N348I)/p51(WT))会导致 NVP 耐药,而不会显著影响核糖核酸酶 H 活性,而 p51 的突变会导致 NVP 耐药和核糖核酸酶 H 功能受损,这表明 NVP 耐药可能独立于核糖核酸酶 H 功能缺陷发生。任一亚基的突变均能提高核酸的亲和力并增强 DNA 合成的延伸性。令人惊讶的是,任一亚基的突变均降低了 p66(N348I)/p51(N348I)、p66(N348I)/p51(WT)和 p66(WT)/p51(N348I)的催化速率(k(pol)),而对脱氧核苷酸底物的亲和力(K(d)(-dNTP))没有显著影响。因此,除了为异二聚体提供结构完整性之外,p51 对于精细调节催化周转、核糖核酸酶 H 加工和耐药性也非常重要。总之,连接亚结构域突变 N348I 通过降低抑制剂结合,降低了催化效率并导致体外对 NVP 的耐药性。