Vijayan R S K, Arnold Eddy, Das Kalyan
Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey, 08854; Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, 08854.
Proteins. 2014 May;82(5):815-29. doi: 10.1002/prot.24460. Epub 2013 Nov 22.
HIV-1 reverse transcriptase (RT) is a multifunctional enzyme that is targeted by nucleoside analogs (NRTIs) and non-nucleoside RT inhibitors (NNRTIs). NNRTIs are allosteric inhibitors of RT, and constitute an integral part of several highly active antiretroviral therapy regimens. Under selective pressure, HIV-1 acquires resistance against NNRTIs primarily by selecting mutations around the NNRTI pocket. Complete RT sequencing of clinical isolates revealed that spatially distal mutations arising in connection and the RNase H domain also confer NNRTI resistance and contribute to NRTI resistance. However, the precise structural mechanism by which the connection domain mutations confer NNRTI resistance is poorly understood. We performed 50-ns molecular dynamics (MD) simulations, followed by essential dynamics, free-energy landscape analyses, and network analyses of RT-DNA, RT-DNA-nevirapine (NVP), and N348I/T369I mutant RT-DNA-NVP complexes. MD simulation studies revealed altered global motions and restricted conformational landscape of RT upon NVP binding. Analysis of protein structure network parameters demonstrated a dissortative hub pattern in the RT-DNA complex and an assortative hub pattern in the RT-DNA-NVP complex suggesting enhanced rigidity of RT upon NVP binding. The connection subdomain mutations N348I/T369I did not induce any significant structural change; rather, these mutations modulate the conformational dynamics and alter the long-range allosteric communication network between the connection subdomain and NNRTI pocket. Insights from the present study provide a structural basis for the biochemical and clinical findings on drug resistance caused by the connection and RNase H mutations.
HIV-1逆转录酶(RT)是一种多功能酶,是核苷类似物(NRTIs)和非核苷RT抑制剂(NNRTIs)的作用靶点。NNRTIs是RT的变构抑制剂,是几种高效抗逆转录病毒治疗方案的重要组成部分。在选择性压力下,HIV-1主要通过在NNRTI口袋周围选择突变来获得对NNRTIs的耐药性。临床分离株的完整RT测序显示,与连接区和核糖核酸酶H结构域相关的空间远端突变也会导致NNRTI耐药,并导致NRTI耐药。然而,连接区突变导致NNRTI耐药的确切结构机制尚不清楚。我们进行了50纳秒的分子动力学(MD)模拟,随后对RT-DNA、RT-DNA-奈韦拉平(NVP)和N348I/T369I突变体RT-DNA-NVP复合物进行了主成分动力学、自由能景观分析和网络分析。MD模拟研究显示,NVP结合后RT的整体运动发生改变,构象景观受到限制。蛋白质结构网络参数分析表明,RT-DNA复合物中存在异配中心模式,而RT-DNA-NVP复合物中存在同配中心模式,这表明NVP结合后RT的刚性增强。连接子结构域突变N348I/T369I没有引起任何显著的结构变化;相反,这些突变调节了构象动力学,并改变了连接子结构域与NNRTI口袋之间的远程变构通讯网络。本研究的见解为连接区和核糖核酸酶H突变导致耐药的生化和临床发现提供了结构基础。