Biomolecular Interactions, German Cancer Research Center, Im Neuenheimer Feld, D-69120 Heidelberg, Germany.
J Pept Sci. 2011 Jan;17(1):56-67. doi: 10.1002/psc.1296. Epub 2010 Sep 27.
In some naturally occurring protein sequences, an abrupt, concerted refolding from β-sheet to helical conformation occurs when the polarity of the surrounding medium drops below a critical level. This switch-like behaviour was first observed on the HIV-1 envelope glycoprotein gp120, where it plays a crucial role in the efficient binding of gp120 to the T-cell receptor CD4. Previous work had shown that an N-terminal amino acid tetrad LPCR and a Trp located 5-20 residues downstream to the tetrad are common motifs in polarity-driven switch peptides. The LPCR tetrad governs the folding of the subsequent residues and acts as a helix initiation site, whereas the Trp is responsible for the cooperative character of the structural change due to multiple, simultaneous interactions of its quadrupole moment with several amino acid residues within the sequences. Here we identify and characterize new families of switch peptides that use different, turn-probable tetrads (LPST and VPSR) as helix initiation sites at the N-terminus. We have also been able to demonstrate that some tetrads with extremely high turn probability do not serve as helix initiation sites. Comparison of these with LPCR and the newly discovered tetrads LPST and VPSR has allowed a more comprehensive description of the physico-chemical properties of helix-inducing tetrads. The deeper understanding of the intrinsic properties of switch sequences allows the design of artificial polarity-driven switches, applicable in engineering of, e.g. controllable binding sites in artificial proteins.
在一些天然存在的蛋白质序列中,当周围介质的极性下降到临界水平以下时,β-折叠会突然协同折叠成螺旋构象。这种类似开关的行为最初在 HIV-1 包膜糖蛋白 gp120 上观察到,它在 gp120 与 T 细胞受体 CD4 的有效结合中起着至关重要的作用。以前的工作表明,N 端氨基酸四联体 LPCR 和位于四联体下游 5-20 个残基处的色氨酸是极性驱动开关肽中的常见模体。LPCR 四联体控制后续残基的折叠,并作为螺旋起始位点,而色氨酸负责结构变化的协同特征,因为其四极矩与序列内的几个氨基酸残基的多个同时相互作用。在这里,我们鉴定并表征了使用不同的、可能形成转角的四联体 (LPST 和 VPSR) 作为 N 端螺旋起始位点的新开关肽家族。我们还能够证明,一些具有极高转角概率的四联体不能作为螺旋起始位点。将这些四联体与 LPCR 和新发现的四联体 LPST 和 VPSR 进行比较,可以更全面地描述诱导螺旋的四联体的物理化学性质。对开关序列内在特性的更深入了解允许设计人工极性驱动开关,可应用于人工蛋白质中可控结合位点的工程等。