Ratnarajah Nagulan, Simmons Andrew, Davydov Oleg, Hojjatoleslami Ali
Medical Image Computing, School of BioSciences, University of Kent, UK.
Med Image Comput Comput Assist Interv. 2010;13(Pt 1):666-73. doi: 10.1007/978-3-642-15705-9_81.
This paper presents a novel white matter fibre tractography approach using average curves of probabilistic fibre tracking measures. We compute "representative" curves from the original probabilistic curve-set using two different averaging methods. These typical curves overcome a number of the limitations of deterministic and probabilistic approaches. They produce strong connections to every anatomically distinct fibre tract from a seed point and also convey important information about the underlying probability distribution. A new clustering algorithm is employed to separate fibres into branches before applying averaging methods. The performance of the technique is verified on a wide range of seed points using a phantom dataset and an in vivo dataset.
本文提出了一种使用概率纤维追踪测量平均曲线的新型白质纤维束成像方法。我们使用两种不同的平均方法从原始概率曲线集中计算“代表性”曲线。这些典型曲线克服了确定性和概率性方法的许多局限性。它们从种子点与每个解剖学上不同的纤维束产生强连接,并且还传达有关潜在概率分布的重要信息。在应用平均方法之前,采用一种新的聚类算法将纤维分离成分支。使用体模数据集和体内数据集在广泛的种子点上验证了该技术的性能。