Yo Ting-Shuo, Anwander Alfred, Descoteaux Maxime, Fillard Pierre, Poupon Cyril, Knösche T R
Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
Med Image Comput Comput Assist Interv. 2009;12(Pt 1):886-93. doi: 10.1007/978-3-642-04268-3_109.
In this paper, we compare a representative selection of current state-of-the-art algorithms in diffusion-weighted magnetic resonance imaging (dwMRI) tractography, and propose a novel way to quantitatively define the connectivity between brain regions. As criterion for the comparison, we quantify the connectivity computed with the different methods. We provide initial results using diffusion tensor, spherical deconvolution, ball-and-stick model, and persistent angular structure (PAS) along with deterministic and probabilistic tractography algorithms on a human DWI dataset. The connectivity is presented for a representative selection of regions in the brain in matrices and connectograms. Our results show that fiber crossing models are able to reveal connections between more brain areas than the simple tensor model. Probabilistic approaches show in average more connected regions but lower connectivity values than deterministic methods.
在本文中,我们比较了扩散加权磁共振成像(dwMRI)纤维束成像中当前最先进算法的代表性选择,并提出了一种定量定义脑区之间连通性的新方法。作为比较标准,我们对用不同方法计算出的连通性进行量化。我们在一个人类扩散加权成像(DWI)数据集上,使用扩散张量、球面反卷积、球棒模型和持久角结构(PAS)以及确定性和概率性纤维束成像算法提供了初步结果。以矩阵和连接图的形式展示了大脑中代表性区域选择的连通性。我们的结果表明,纤维交叉模型比简单张量模型能够揭示更多脑区之间的连接。概率性方法平均显示出更多的连接区域,但与确定性方法相比,连通性值更低。