Mahdavi S Sara, Moradi Mehdi, Morris William J, Salcudean Septimiu E
Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, Canada.
Med Image Comput Comput Assist Interv. 2010;13(Pt 2):76-83. doi: 10.1007/978-3-642-15745-5_10.
In this paper we propose a fully automatic 2D prostate segmentation algorithm using fused ultrasound (US) and elastography images. We show that the addition of information from mechanical tissue properties acquired from elastography to acoustic information from B-mode ultrasound, can improve segmentation results. Gray level edge similarity and edge continuity in both US and elastography images deform an Active Shape Model. Comparison of automatic and manual contours on 107 transverse images of the prostate show a mean absolute error of 2.6 +/- 0.9 mm and a running time of 17.9 +/- 12.2 s. These results show that the combination of the high contrast elastography images with the more detailed but low contrast US images can lead to very promising results for developing an automatic 3D segmentation algorithm.
在本文中,我们提出了一种使用融合超声(US)和弹性成像图像的全自动二维前列腺分割算法。我们表明,将从弹性成像获得的机械组织特性信息添加到B模式超声的声学信息中,可以改善分割结果。US和弹性成像图像中的灰度边缘相似度和边缘连续性使主动形状模型变形。对前列腺107幅横向图像上的自动轮廓和手动轮廓进行比较,结果显示平均绝对误差为2.6±0.9毫米,运行时间为17.9±12.2秒。这些结果表明,高对比度的弹性成像图像与更详细但低对比度的US图像相结合,对于开发自动三维分割算法可能会产生非常有前景的结果。