Australian e-Health Research Centre, CSIRO, Brisbane, QLD 4029, Australia.
Med Image Anal. 2013 Aug;17(6):587-600. doi: 10.1016/j.media.2013.04.001. Epub 2013 Apr 11.
Prostate segmentation aids in prostate volume estimation, multi-modal image registration, and to create patient specific anatomical models for surgical planning and image guided biopsies. However, manual segmentation is time consuming and suffers from inter-and intra-observer variabilities. Low contrast images of trans rectal ultrasound and presence of imaging artifacts like speckle, micro-calcifications, and shadow regions hinder computer aided automatic or semi-automatic prostate segmentation. In this paper, we propose a prostate segmentation approach based on building multiple mean parametric models derived from principal component analysis of shape and posterior probabilities in a multi-resolution framework. The model parameters are then modified with the prior knowledge of the optimization space to achieve optimal prostate segmentation. In contrast to traditional statistical models of shape and intensity priors, we use posterior probabilities of the prostate region determined from random forest classification to build our appearance model, initialize and propagate our model. Furthermore, multiple mean models derived from spectral clustering of combined shape and appearance parameters are applied in parallel to improve segmentation accuracies. The proposed method achieves mean Dice similarity coefficient value of 0.91 ± 0.09 for 126 images containing 40 images from the apex, 40 images from the base and 46 images from central regions in a leave-one-patient-out validation framework. The mean segmentation time of the procedure is 0.67 ± 0.02 s.
前列腺分割有助于前列腺体积估计、多模态图像配准,并为手术规划和图像引导活检创建患者特定的解剖模型。然而,手动分割既耗时又费力,且存在观察者内和观察者间的变异性。直肠超声的低对比度图像以及存在斑点、微钙化和阴影区域等成像伪影,阻碍了计算机辅助的自动或半自动前列腺分割。在本文中,我们提出了一种基于构建多个均值参数模型的前列腺分割方法,这些模型源自形状的主成分分析和多分辨率框架中的后验概率。然后,通过优化空间的先验知识对模型参数进行修改,以实现最佳的前列腺分割。与传统的形状和强度先验统计模型不同,我们使用随机森林分类确定的前列腺区域的后验概率来构建我们的外观模型,初始化和传播我们的模型。此外,还应用了来自组合形状和外观参数的谱聚类的多个均值模型并行提高分割精度。在一个留一患者验证框架中,该方法对 126 张图像进行了测试,其中包括 40 张来自顶部、40 张来自底部和 46 张来自中央区域的图像,平均 Dice 相似系数值为 0.91 ± 0.09。该方法的平均分割时间为 0.67 ± 0.02 秒。