Lui Lok Ming, Wong Tsz Wai, Thompson Paul, Chan Tony, Gu Xianfeng, Yau Shing-Tung
Department of Mathematics, Harvard University, Cambridge, MA, USA.
Med Image Comput Comput Assist Interv. 2010;13(Pt 2):323-30. doi: 10.1007/978-3-642-15745-5_40.
We develop a new algorithm to automatically register hippocampal (HP) surfaces with complete geometric matching, avoiding the need to manually label landmark features. A good registration depends on a reasonable choice of shape energy that measures the dissimilarity between surfaces. In our work, we first propose a complete shape index using the Beltrami coefficient and curvatures, which measures subtle local differences. The proposed shape energy is zero if and only if two shapes are identical up to a rigid motion. We then seek the best surface registration by minimizing the shape energy. We propose a simple representation of surface diffeomorphisms using Beltrami coefficients, which simplifies the optimization process. We then iteratively minimize the shape energy using the proposed Beltrami Holomorphic flow (BHF) method. Experimental results on 212 HP of normal and diseased (Alzheimer's disease) subjects show our proposed algorithm is effective in registering HP surfaces with complete geometric matching. The proposed shape energy can also capture local shape differences between HP for disease analysis.
我们开发了一种新算法,可通过完全几何匹配自动配准海马体(HP)表面,无需手动标记地标特征。良好的配准取决于对测量表面间差异的形状能量的合理选择。在我们的工作中,我们首先使用贝尔特拉米系数和曲率提出了一个完整的形状指数,该指数可测量细微的局部差异。当且仅当两个形状在刚体运动下相同时,所提出的形状能量为零。然后,我们通过最小化形状能量来寻求最佳的表面配准。我们使用贝尔特拉米系数提出了一种简单的表面微分同胚表示,这简化了优化过程。然后,我们使用所提出的贝尔特拉米全纯流(BHF)方法迭代地最小化形状能量。对212例正常和患病(阿尔茨海默病)受试者的HP进行的实验结果表明,我们提出的算法在通过完全几何匹配配准HP表面方面是有效的。所提出的形状能量还可以捕捉HP之间的局部形状差异,用于疾病分析。