Jiangsu Key Laboratory of Organic Electronics & Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210046, People's Republic of China.
Inorg Chem. 2010 Nov 1;49(21):9839-51. doi: 10.1021/ic100364v.
The six-coordinated mononuclear manganese(III) complex [Mn(5-Br-sal-N-1,5,8,12)]ClO(4) has been synthesized and isolated in crystalline form. Magnetic measurements and variable-temperature single-crystal X-ray crystallography corroborated with theoretical analysis provided firm evidence for the spin-crossover effects of this system. The monomeric complex cations are made by a hexadentate mixed-donor Schiff base ligand imposing a distorted octahedral geometry and subtle structural effects determining the manifestation of the variable spin properties of the manganese(III) centers. The spin crossover in [Mn(5-Br-sal-N-1,5,8,12)]ClO(4) has resulted in an unprecedented crystallographic observation of the coexistence of high-spin (HS; S = 2) and low-spin (LS; S = 1) manganese(III) complex cations in equal proportions around 100 K. At room temperature, the two crystallographically distinct manganese centers are both HS. Only one of the two slightly different units undergoes spin crossover in the temperature range ∼250-50 K, whereas the other remains in the HS state down to 50 K. The density functional theory calculations, performed as relevant numerical experiments designed to identify the role of orbital and interelectron effects, revealed unedited aspects of the manganese(III) spin-conversion mechanisms, developed in the conceptual frame of ligand-field models.
六配位单核锰(III)配合物[Mn(5-Br-sal-N-1,5,8,12)]ClO(4)已被合成并以晶体形式分离。磁性测量和变温单晶 X 射线晶体学与理论分析相结合,为该体系的自旋交叉效应提供了确凿的证据。单体配合物阳离子由六齿混合供体席夫碱配体构成,采用扭曲的八面体几何形状,细微的结构效应决定了锰(III)中心可变自旋性质的表现。[Mn(5-Br-sal-N-1,5,8,12)]ClO(4)中的自旋交叉导致了一个前所未有的晶体学观察结果,即在 100 K 左右,高自旋(HS; S = 2)和低自旋(LS; S = 1)锰(III)配合物阳离子以相等的比例共存。在室温下,两个结晶学上不同的锰中心都是 HS。只有两个略有不同的单元中的一个在 250-50 K 的温度范围内经历自旋交叉,而另一个在 50 K 以下保持 HS 状态。密度泛函理论计算作为相关数值实验进行,旨在确定轨道和电子间相互作用的作用,揭示了在配体场模型的概念框架下发展的锰(III)自旋转换机制的未编辑方面。