School of Integrative Biology, University of Queensland, Brisbane, Queensland 4072, Australia.
Evol Dev. 2010 Sep-Oct;12(5):494-518. doi: 10.1111/j.1525-142X.2010.00435.x.
Wnt-signalling plays a critical role in animal development, and its misregulation results in serious human diseases, including cancer. While the Wnt pathway is well studied in eumetazoan models, little is known about the evolutionary origin of its components and their functions. Here, we have identified key machinery of the Wnt-β-catenin (canonical)-signalling pathway that is encoded in the Amphimedon queenslandica (Demospongiae; Porifera) genome, namely Wnt, Fzd, SFRP, Lrp5/6, Dvl, Axin, APC, GSK3, β-catenin, Tcf, and Groucho. Most of these genes are not detected in the choanoflagellate and other nonmetazoan eukaryotic genomes. In contrast, orthologues of some of key components of bilaterian Wnt-planar cell polarity and Wnt/Ca(2+) are absent from the Amphimedon genome, suggesting these pathways evolved after demosponge and eumetazoan lineages diverged. Sequence analysis of the identified proteins of the Wnt-β-catenin pathway has revealed the presence of most of the conserved motifs and domains responsible for protein-protein and protein-DNA interactions in vertebrates and insects. However, several protein-protein interaction domains appear to be absent from the Amphimedon Axin and APC proteins. These are also missing from their orthologues in the cnidarian Nematostella vectensis, suggesting that they are bilaterian novelties. All of the analyzed Wnt pathway genes are expressed in specific patterns during Amphimedon embryogenesis. Most are expressed in especially striking and highly dynamic patterns during formation of a simple organ-like larval structure, the pigment ring. Overall, our results indicate that the Wnt-β-catenin pathway was used in embryonic patterning in the last common ancestor of living metazoans. Subsequently, gene duplications and a possible increase in complexity of protein interactions have resulted in the precisely regulated Wnt pathway observed in extant bilaterian animals.
Wnt 信号通路在动物发育中起着至关重要的作用,其调控失常会导致严重的人类疾病,包括癌症。虽然 Wnt 通路在后生动物模型中得到了很好的研究,但对于其组成部分的进化起源及其功能知之甚少。在这里,我们鉴定了在 Amphimedon queenslandica(海绵动物门;多孔动物门)基因组中编码的 Wnt-β-连环蛋白(经典)信号通路的关键机制,即 Wnt、Fzd、SFRP、Lrp5/6、Dvl、Axin、APC、GSK3、β-连环蛋白、Tcf 和 Groucho。这些基因中的大多数在领鞭毛虫和其他非后生动物真核生物基因组中都没有检测到。相比之下,海绵动物和后生动物谱系分化后,Amphimedon 基因组中缺乏一些关键成分的双侧 Wnt-平面细胞极性和 Wnt/Ca(2+)的同源物,表明这些途径是在这之后进化而来的。对鉴定的 Wnt-β-连环蛋白通路蛋白进行序列分析,揭示了大多数保守基序和结构域的存在,这些基序和结构域负责脊椎动物和昆虫中的蛋白-蛋白和蛋白-DNA相互作用。然而,Amphimedon Axin 和 APC 蛋白中似乎缺少几个蛋白-蛋白相互作用结构域。这些结构域也缺失于它们在刺胞动物 Nematostella vectensis 中的同源物中,表明它们是后生动物的新特征。分析的所有 Wnt 通路基因在 Amphimedon 胚胎发生过程中都以特定模式表达。在形成简单的类幼虫结构,即色素环时,大多数基因的表达模式特别引人注目且极具动态性。总的来说,我们的研究结果表明,Wnt-β-连环蛋白通路在前生动物的最后共同祖先中被用于胚胎形态发生。随后,基因复制和可能增加的蛋白质相互作用的复杂性导致了现存后生动物中观察到的精确调控的 Wnt 通路。