Flores-Hernández Eric, Binder Grace, Mei Kuo-Ching, Tejeda-Muñoz Nydia
Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.
Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.
Front Cell Dev Biol. 2025 Aug 22;13:1622218. doi: 10.3389/fcell.2025.1622218. eCollection 2025.
The Wnt pathway is an evolutionarily conserved signaling cascade that regulates a wide range of fundamental cellular processes, including proliferation, differentiation, polarity, migration, metabolism, and survival. Due to its central regulatory roles, Wnt signaling is critically involved in the pathophysiology of numerous human diseases. Aberrant activation or insufficient inhibition of this pathway has been causally linked to cancer, degenerative disorders, metabolic syndromes, and developmental abnormalities. Wnt signaling drives cancer progression by reprogramming metabolism and promoting immune evasion. Wnt-driven tumors exhibit enhanced aerobic glycolysis (the Warburg effect), glutaminolysis, and macropinocytosis, which support rapid proliferation and help maintain redox homeostasis under nutrient-limited or nutrient-deprived conditions. These metabolic adaptations sustain tumor survival and contribute to immune suppression, as seen in the Wnt5a-indoleamine 2,3-dioxygenase 1 (IDO1) axis, which fosters regulatory T-cell expansion and an immunosuppressive microenvironment. The interplay among glycolysis, glutamine metabolism, and immune escape renders Wnt-driven cancers highly adaptable and resistant to conventional therapies. Targeting metabolic enzymes, such as pyruvate dehydrogenase kinase 1 (PDK1), lactate dehydrogenase A (LDHA), glutaminase (GLS), and monocarboxylate transporters (MCT-1), alongside immune checkpoint inhibitors or IDO1 blockade, presents a promising strategy for overcoming metabolic plasticity and immune evasion in Wnt-driven malignancies, thereby enhancing therapeutic efficacy and improving patient survival in otherwise refractory tumor types. Combining glycolysis and glutaminolysis inhibitors with T-cell activating therapies may disrupt tumor metabolic plasticity and restore anti-tumor immunity. Additionally, advanced drug delivery systems, including lipid nanoparticles (LNPs), polymeric nanocarriers, and exosome-based platforms, enhance the targeted accumulation of metabolic inhibitors and immunomodulatory agents while minimizing systemic toxicity. This review examines the metabolic and immune adaptations of Wnt-driven cancers, with a focus on glycolysis, glutaminolysis, and macropinocytosis. We highlight emerging therapeutic targets and nanomedicine-based delivery strategies to counteract metabolic adaptation and immune suppression. By integrating metabolic and immune-targeting with precision nano-delivery platforms, future treatment paradigms may improve outcomes for aggressive and therapy-resistant Wnt-driven cancers.
Wnt信号通路是一种进化上保守的信号级联反应,可调节广泛的基本细胞过程,包括增殖、分化、极性、迁移、代谢和存活。由于其核心调节作用,Wnt信号传导在众多人类疾病的病理生理学中起着关键作用。该信号通路的异常激活或抑制不足已被证明与癌症、退行性疾病、代谢综合征和发育异常存在因果关系。Wnt信号通过重新编程代谢和促进免疫逃逸来推动癌症进展。Wnt驱动的肿瘤表现出增强的有氧糖酵解(瓦伯格效应)、谷氨酰胺分解和巨胞饮作用,这些作用支持快速增殖,并有助于在营养有限或营养缺乏的条件下维持氧化还原稳态。这些代谢适应维持了肿瘤的存活并导致免疫抑制,如在Wnt5a-吲哚胺2,3-双加氧酶1(IDO1)轴中所见,该轴促进调节性T细胞的扩增和免疫抑制微环境。糖酵解、谷氨酰胺代谢和免疫逃逸之间的相互作用使Wnt驱动的癌症具有高度适应性并对传统疗法产生抗性。靶向代谢酶,如丙酮酸脱氢酶激酶1(PDK1)、乳酸脱氢酶A(LDHA)、谷氨酰胺酶(GLS)和单羧酸转运蛋白(MCT-1),同时联合免疫检查点抑制剂或IDO1阻断,是克服Wnt驱动的恶性肿瘤中代谢可塑性和免疫逃逸的一种有前景的策略,从而提高治疗效果并改善难治性肿瘤类型患者的生存率。将糖酵解和谷氨酰胺分解抑制剂与T细胞激活疗法相结合,可能会破坏肿瘤的代谢可塑性并恢复抗肿瘤免疫力。此外,先进的药物递送系统,包括脂质纳米颗粒(LNP)、聚合物纳米载体和基于外泌体的平台,可增强代谢抑制剂和免疫调节剂的靶向积累,同时将全身毒性降至最低。本综述探讨了Wnt驱动的癌症的代谢和免疫适应,重点关注糖酵解、谷氨酰胺分解和巨胞饮作用。我们强调了新兴的治疗靶点和基于纳米医学的递送策略,以对抗代谢适应和免疫抑制。通过将代谢和免疫靶向与精确的纳米递送平台相结合,未来的治疗模式可能会改善侵袭性和治疗抵抗性Wnt驱动癌症的治疗效果。