Boston Biomedical Research Institute, Watertown, MA 02472, USA.
Circ Res. 2010 Nov 12;107(10):1220-31. doi: 10.1161/CIRCRESAHA.110.225649. Epub 2010 Sep 30.
A homozygous disruption or genetic mutation of the bag3 gene, a member of the Bcl-2-associated athanogene (BAG) family proteins, causes cardiomyopathy and myofibrillar myopathy that is characterized by myofibril and Z-disc disruption. However, the detailed disease mechanism is not yet fully understood.
bag3(-/-) mice exhibit differences in the extent of muscle degeneration between muscle groups with muscles experiencing the most usage degenerating at an accelerated rate. Usage-dependent muscle degeneration suggests a role for BAG3 in supporting cytoskeletal connections between the Z-disc and myofibrils under mechanical stress. The mechanism by which myofibrillar structure is maintained under mechanical stress remains unclear. The purpose of the study is to clarify the detailed molecular mechanism of BAG3-mediated muscle maintenance under mechanical stress.
To address the question of whether bag3 gene knockdown induces myofibrillar disorganization caused by mechanical stress, in vitro mechanical stretch experiments using rat neonatal cardiomyocytes and a short hairpin RNA-mediated gene knockdown system of the bag3 gene were performed. As expected, mechanical stretch rapidly disrupts myofibril structures in bag3 knockdown cardiomyocytes. BAG3 regulates the structural stability of F-actin through the actin capping protein, CapZβ1, by promoting association between Hsc70 and CapZβ1. BAG3 facilitates the distribution of CapZβ1 to the proper location, and dysfunction of BAG3 induces CapZ ubiquitin-proteasome-mediated degradation. Inhibition of CapZβ1 function by overexpressing CapZβ2 increased myofibril vulnerability and fragmentation under mechanical stress. On the other hand, overexpression of CapZβ1 inhibits myofibrillar disruption in bag3 knockdown cells under mechanical stress. As a result, heart muscle isolated from bag3(-/-) mice exhibited myofibrillar degeneration and lost contractile activity after caffeine contraction.
These results suggest novel roles for BAG3 and Hsc70 in stabilizing myofibril structure and inhibiting myofibrillar degeneration in response to mechanical stress. These proteins are possible targets for further research to identify therapies for myofibrillar myopathy or other degenerative diseases.
BAG3 基因是 Bcl-2 相关抗凋亡基因(BAG)家族蛋白的成员,其纯合缺失或基因突变会导致肌病和肌原纤维肌病,其特征是肌原纤维和 Z 盘破裂。然而,其详细的疾病机制尚不完全清楚。
bag3(-/-) 小鼠的肌肉群之间存在肌肉退化程度的差异,使用频率最高的肌肉退化速度加快。使用依赖性肌肉退化表明 BAG3 在机械应激下支持 Z 盘和肌原纤维之间细胞骨架连接的作用。肌原纤维结构在机械应激下维持的机制尚不清楚。本研究的目的是阐明 BAG3 在机械应激下介导肌肉维持的详细分子机制。
为了解 bag3 基因敲低是否会导致机械应激引起的肌原纤维紊乱,我们在体外使用大鼠新生心肌细胞进行机械拉伸实验,并使用短发夹 RNA 介导的 bag3 基因敲低系统。正如预期的那样,机械拉伸会迅速破坏 bag3 基因敲低的心肌细胞中的肌原纤维结构。BAG3 通过促进 Hsc70 与 CapZβ1 的结合,调节肌动蛋白加帽蛋白 CapZβ1 调节 F-肌动蛋白的结构稳定性。BAG3 促进 CapZβ1 向适当位置的分布,BAG3 功能障碍诱导 CapZ 泛素蛋白酶体介导的降解。通过过表达 CapZβ2 抑制 CapZβ1 功能会增加机械应激下肌原纤维的脆弱性和碎裂。另一方面,过表达 CapZβ1 可抑制机械应激下 bag3 基因敲低细胞的肌原纤维破坏。结果表明,从 bag3(-/-) 小鼠分离的心肌在咖啡因收缩后表现出肌原纤维退化和收缩活性丧失。
这些结果表明 BAG3 和 Hsc70 在稳定肌原纤维结构和抑制机械应激下的肌原纤维退化方面具有新的作用。这些蛋白可能是进一步研究肌原纤维肌病或其他退行性疾病治疗方法的潜在靶点。