Suppr超能文献

存在双重删失数据时的同步边际生存估计量。

Simultaneous marginal survival estimators when doubly censored data is present.

作者信息

Julià Olga, Gómez Guadalupe

机构信息

Departament de Probabilitat, Lògica i Estadística, Universitat de Barcelona, Gran Via 585, 08007, Barcelona, Spain.

出版信息

Lifetime Data Anal. 2011 Jul;17(3):347-72. doi: 10.1007/s10985-010-9186-5. Epub 2010 Oct 1.

Abstract

A doubly censoring scheme occurs when the lifetimes T being measured,from a well-known time origin, are exactly observed within a window [L, R] of observational time and are otherwise censored either from above (right-censored observations)or below (left-censored observations). Sample data consists on the pairs (U, δ)where U = min{R, max{T, L}} and δ indicates whether T is exactly observed (δ = 0),right-censored (δ = 1) or left-censored (δ = −1). We are interested in the estimation of the marginal behaviour of the three random variables T, L and R based on the observed pairs (U, δ).We propose new nonparametric simultaneous marginal estimators Ŝ(T) , Ŝ(L) and Ŝ(R) for the survival functions of T, L and R, respectively, by means of an inverse-probability-of-censoring approach. The proposed estimators Ŝ(T) , Ŝ(L) and Ŝ(R) are not computationally intensive, generalize the empirical survival estimator and reduce to the Kaplan-Meier estimator in the absence of left-censored data. Furthermore,Ŝ(T) is equivalent to a self-consistent estimator, is uniformly strongly consistent and asymptotically normal. The method is illustrated with data from a cohort of drug users recruited in a detoxification program in Badalona (Spain). For these data we estimate the survival function for the elapsed time from starting IV-drugs to AIDS diagnosis, as well as the potential follow-up time. A simulation study is discussed to assess the performance of the three survival estimators for moderate sample sizes and different censoring levels.

摘要

当从一个已知的时间原点开始测量的寿命T在观察时间窗口[L, R]内被精确观察到,否则从上方(右删失观测值)或下方(左删失观测值)被删失时,就会出现双重删失方案。样本数据由(U, δ)对组成,其中U = min{R, max{T, L}},δ表示T是否被精确观察到(δ = 0)、右删失(δ = 1)或左删失(δ = -1)。我们感兴趣的是基于观测到的(U, δ)对来估计三个随机变量T、L和R的边际行为。我们通过删失概率逆方法分别为T、L和R的生存函数提出了新的非参数同时边际估计量Ŝ(T)、Ŝ(L)和Ŝ(R)。所提出的估计量Ŝ(T)、Ŝ(L)和Ŝ(R)计算量不大,推广了经验生存估计量,并且在没有左删失数据的情况下简化为Kaplan-Meier估计量。此外,Ŝ(T)等同于一个自洽估计量,是一致强相合的且渐近正态。用在西班牙巴达洛纳一个戒毒项目中招募的一组吸毒者的数据对该方法进行了说明。对于这些数据,我们估计了从开始静脉注射毒品到艾滋病诊断所经过时间的生存函数以及潜在的随访时间。讨论了一项模拟研究,以评估这三个生存估计量在中等样本量和不同删失水平下的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验