Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 36a, D-14195 Berlin, Germany.
J Phys Chem B. 2010 Oct 28;114(42):13517-35. doi: 10.1021/jp106323e.
The local S(0) → S(1) transition energies (site energies) and corresponding excitonic couplings of chlorophyll a (Chla) and b (Chlb) pigments bound to trimeric, major light-harvesting complex II (LHCII) of higher plants are calculated on the basis of the two crystal structures (Liu et al. Nature 2004, 428, 287-292; Standfuss et al. EMBO J. 2005, 24, 919-928) by using a combined quantum chemical/electrostatic method (Müh et al. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 16862-16867) that has been modified to cover membrane proteins and to account more realistically for the behavior of protonatable groups under the conditions of low-temperature optical spectroscopy. The obtained exciton levels are in reasonable agreement with experimental information (including linear absorption, linear dichroism, circular dichroism, fluorescence spectra of native as well as wild-type-minus-mutant difference absorption spectra of recombinant LHCII) and differ from earlier treatments based on fitted site energies (Novoderezhkin et al. J. Phys. Chem. B 2005, 109, 10493-10504) mainly by assigning a lower energy level to Chla 604 (in the nomenclature of Liu et al.) and Chlb 608 and a higher energy level to Chlb 605 and 609. The energy sink at cyrogenic temperatures is located at Chla 610 in the stromal layer of pigments, but structural changes at elevated temperatures may change the nature of the terminal emitter domain (including Chla 610/611/612). The site energy red-shift of Chla 610 is calculated to be significantly larger on the basis of the crystal structure of Standfuss et al. compared to that of Liu et al. due to conformational differences in the neighborhood of this pigment. A possible conformational change in the vicinity of Chla 604 involving tyrosine 112 and neoxanthin is found to strongly affect the site energy of this Chla and render it an alternative energy sink in the lumenal layer. A detailed, structure-based analysis of electrostatic pigment-protein interactions is performed to identify amino acid residues that are of interest for future mutagenesis experiments with the aim to further characterize the energy sinks, putative "bottleneck" states for excitation energy transfer, and potential sites of nonphotochemical quenching.
基于两个晶体结构(Liu 等人,自然 2004, 428, 287-292;Standfuss 等人,欧洲分子生物学组织杂志 2005, 24, 919-928),采用一种组合量子化学/静电方法(Müh 等人,美国国家科学院院刊 2007, 104, 16862-16867),对高等植物三聚体主要光捕获复合物 II(LHCII)中叶绿素 a(Chla)和 b(Chlb)色素的局部 S(0)→S(1)跃迁能(局域能)和相应的激子耦合进行了计算。该方法经过修改,可涵盖膜蛋白,并更真实地反映质子化基团在低温光学光谱条件下的行为。得到的激子能级与实验信息(包括线性吸收、线性二色性、圆二色性、天然以及野生型减去突变体差异吸收光谱的荧光光谱)吻合较好,与基于拟合局域能的早期处理方法(Novoderezhkin 等人,物理化学杂志 B 2005, 109, 10493-10504)主要区别在于,将 Chla 604(在 Liu 等人的命名法中)和 Chlb 608 的能级分配得更低,而将 Chlb 605 和 609 的能级分配得更高。在低温下,能量汇位于色素基质层的 Chla 610 处,但在高温下结构的变化可能会改变末端发射体域的性质(包括 Chla 610/611/612)。与 Liu 等人的晶体结构相比,Standfuss 等人的晶体结构中 Chla 610 的局域能红移计算结果要大得多,这是由于该色素附近的构象差异所致。发现 Chla 604 附近涉及酪氨酸 112 和新黄质的构象变化会强烈影响该 Chla 的局域能,并使其成为腔层中的另一个能量汇。对静电色素-蛋白相互作用进行了详细的基于结构的分析,以确定对未来突变实验感兴趣的氨基酸残基,目的是进一步表征能量汇、激发能量转移的潜在“瓶颈”状态以及非光化学猝灭的潜在位点。