Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, USA.
J Phys Chem B. 2010 Sep 16;114(36):11884-98. doi: 10.1021/jp103995h.
In this work, we present simulated steady-state absorption, emission, and nonresonant hole burning (HB) spectra for the CP47 antenna complex of photosystem II (PS II) based on fits to recently refined experimental data (Neupane et al. J. Am. Chem. Soc. 2010, 132, 4214). Excitonic simulations are based on the 2.9 Å resolution structure of the PS II core from cyanobacteria (Guskov et al. Nat. Struct. Mol. Biol. 2009, 16, 334), and allow for preliminary assignment of the chlorophylls (Chls) contributing to the lowest excitonic states. The search for realistic site energies was guided by experimental constraints and aided by simple fitting algorithms. The following experimental constraints were used: (i) the oscillator strength of the lowest-energy state should be approximately ≤0.5 Chl equivalents; (ii) the excitonic structure must explain the experimentally observed red-shifted (∼695 nm) emission maximum; and (iii) the excitonic interactions of all states must properly describe the broad (non-line-narrowed, NLN) HB spectrum (including its antihole) whose shape is extremely sensitive to the excitonic structure of the complex, especially the lowest excitonic states. Importantly, our assignments differ significantly from those previously reported by Raszewski and Renger (J. Am. Chem. Soc. 2008, 130, 4431), due primarily to differences in the experimental data simulated. In particular, we find that the lowest state localized on Chl 526 possesses too high of an oscillator strength to fit low-temperature experimental data. Instead, we suggest that Chl 523 most strongly contributes to the lowest excitonic state, with Chl 526 contributing to the second excitonic state. Since the fits of nonresonant holes are more restrictive (in terms of possible site energies) than those of absorption and emission spectra, we suggest that fits of linear optical spectra along with HB spectra provide more realistic site energies.
在这项工作中,我们根据最近精修的实验数据(Neupane 等人,《美国化学学会杂志》,2010 年,第 132 卷,第 4214 页),为 PS II 的 CP47 天线复合物呈现了模拟的稳态吸收、发射和非共振孔烧蚀(HB)谱。激子模拟基于蓝藻 PS II 核心的 2.9 Å 分辨率结构(Guskov 等人,《自然结构与分子生物学》,2009 年,第 16 卷,第 334 页),并允许对贡献于最低激子态的叶绿素(Chl)进行初步分配。对实际位置能的搜索受到实验限制的指导,并借助简单的拟合算法得到帮助。使用了以下实验限制:(i)最低能量态的振子强度应约≤0.5 Chl 当量;(ii)激子结构必须解释实验观测到的红移(约 695nm)发射最大值;(iii)所有态的激子相互作用必须正确描述宽带(非线窄化,NLN)HB 谱(包括其反孔),其形状对复合物的激子结构极其敏感,特别是最低激子态。重要的是,我们的分配与 Raszewski 和 Renger 先前报道的(《美国化学学会杂志》,2008 年,第 130 卷,第 4431 页)有很大不同,主要是由于模拟的实验数据不同。特别是,我们发现定位于 Chl 526 的最低态具有太高的振子强度,无法拟合低温实验数据。相反,我们建议 Chl 523 对最低激子态的贡献最大,而 Chl 526 对第二激子态的贡献最大。由于非共振孔的拟合比吸收和发射谱的拟合更具限制性(在可能的位置能方面),因此我们建议线性光学谱与 HB 谱的拟合提供更实际的位置能。