Suppr超能文献

生物心理社会复原力中的非线性动力学

Nonlinear dynamics in biopsychosocial resilience.

作者信息

Pincus David, Metten Annette

机构信息

Department of Psychology, Chapman University, Orange, CA 92866, USA.

出版信息

Nonlinear Dynamics Psychol Life Sci. 2010 Oct;14(4):353-80.

Abstract

Theory and methodology from nonlinear dynamical systems (NDS) may provide considerable advantage to health scientists as well as health care professionals. For instance, NDS methodologies and topics in health care share a focus upon the potentially complex interactions of biological, psychological and social factors over time. Nevertheless, a number of challenges remain in creating the necessary bridges in understanding to allow researchers to apply NDS techniques and to enable practitioners to use the resulting evidence to improve patient care. This article aims to provide such a bridge. First, common concepts pertaining to self-organizing complex adaptive systems are outlined as a general approach to understanding resilience across biological, psychological, and social scales. Next, four data analytic techniques from NDS are compared and contrasted with respect to the information they may provide about some common processes underlying resilience. These techniques are: time-series analysis, state-space grids, catastrophe modeling, and network modeling. Implications for health scientists and practitioners are discussed.

摘要

非线性动力系统(NDS)的理论和方法可能会给健康科学家以及医疗保健专业人员带来相当大的优势。例如,医疗保健中的NDS方法和主题都聚焦于生物、心理和社会因素随时间推移可能存在的复杂相互作用。然而,在建立必要的理解桥梁方面仍存在一些挑战,以便研究人员能够应用NDS技术,并使从业者能够利用由此产生的证据来改善患者护理。本文旨在搭建这样一座桥梁。首先,概述了与自组织复杂适应系统相关的常见概念,作为理解生物、心理和社会尺度上恢复力的一般方法。接下来,将NDS的四种数据分析技术在它们可能提供的关于恢复力潜在共同过程的信息方面进行了比较和对比。这些技术是:时间序列分析、状态空间网格、突变建模和网络建模。并讨论了对健康科学家和从业者的启示。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验