Suppr超能文献

基于软测量的理想反应精馏塔组成估计与控制器设计。

Soft sensor based composition estimation and controller design for an ideal reactive distillation column.

机构信息

Chemical Engineering Department, National Institute of Technology, Tiruchirappalli-620 015, India.

出版信息

ISA Trans. 2011 Jan;50(1):61-70. doi: 10.1016/j.isatra.2010.09.001.

Abstract

In this research work, the authors have presented the design and implementation of a recurrent neural network (RNN) based inferential state estimation scheme for an ideal reactive distillation column. Decentralized PI controllers are designed and implemented. The reactive distillation process is controlled by controlling the composition which has been estimated from the available temperature measurements using a type of RNN called Time Delayed Neural Network (TDNN). The performance of the RNN based state estimation scheme under both open loop and closed loop have been compared with a standard Extended Kalman filter (EKF) and a Feed forward Neural Network (FNN). The online training/correction has been done for both RNN and FNN schemes for every ten minutes whenever new un-trained measurements are available from a conventional composition analyzer. The performance of RNN shows better state estimation capability as compared to other state estimation schemes in terms of qualitative and quantitative performance indices.

摘要

在这项研究工作中,作者提出了一种基于递归神经网络(RNN)的推理状态估计方案的设计和实现,用于理想的反应精馏塔。设计和实现了分散的 PI 控制器。通过使用一种称为时滞神经网络(TDNN)的 RNN 来控制从可用温度测量中估计的组成,从而控制反应精馏过程。在开环和闭环条件下,将基于 RNN 的状态估计方案的性能与标准扩展卡尔曼滤波器(EKF)和前馈神经网络(FNN)进行了比较。对于每十分钟从传统的组成分析仪获得新的未经训练的测量值时,对于 RNN 和 FNN 方案都进行在线训练/校正。与其他状态估计方案相比,RNN 的性能在定性和定量性能指标方面都表现出更好的状态估计能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验