Departamento de Ciencias Computacionales, Tecnologico de Monterrey Campus Monterey, Monterrey, Nuevo Leon, Mexico.
Comput Biol Chem. 2010 Aug;34(4):244-50. doi: 10.1016/j.compbiolchem.2010.08.003. Epub 2010 Sep 9.
Biomarker discovery is a typical application from functional genomics. Due to the large number of genes studied simultaneously in microarray data, feature selection is a key step. Swarm intelligence has emerged as a solution for the feature selection problem. However, swarm intelligence settings for feature selection fail to select small features subsets. We have proposed a swarm intelligence feature selection algorithm based on the initialization and update of only a subset of particles in the swarm. In this study, we tested our algorithm in 11 microarray datasets for brain, leukemia, lung, prostate, and others. We show that the proposed swarm intelligence algorithm successfully increase the classification accuracy and decrease the number of selected features compared to other swarm intelligence methods.
生物标志物发现是功能基因组学的典型应用。由于在微阵列数据中同时研究了大量基因,因此特征选择是关键步骤。群体智能已成为特征选择问题的解决方案。但是,群体智能在特征选择方面的设置无法选择小的特征子集。我们已经提出了一种基于仅对群体中的一小部分粒子进行初始化和更新的群体智能特征选择算法。在这项研究中,我们在 11 个用于大脑,白血病,肺,前列腺等的微阵列数据集上测试了我们的算法。我们表明,与其他群体智能方法相比,所提出的群体智能算法可以成功提高分类准确性并减少所选特征的数量。