Suppr超能文献

使用二元状态对与前列腺肿瘤进展相关的基因表达谱进行建模。

Modelling gene expression profiles related to prostate tumor progression using binary states.

作者信息

Martinez Emmanuel, Trevino Victor

机构信息

Cátedra de Bioinformática, Tecnológico de Monterrey, Campus Monterrey, Monterrey, Nuevo León 64849, México.

出版信息

Theor Biol Med Model. 2013 May 31;10:37. doi: 10.1186/1742-4682-10-37.

Abstract

BACKGROUND

Cancer is a complex disease commonly characterized by the disrupted activity of several cancer-related genes such as oncogenes and tumor-suppressor genes. Previous studies suggest that the process of tumor progression to malignancy is dynamic and can be traced by changes in gene expression. Despite the enormous efforts made for differential expression detection and biomarker discovery, few methods have been designed to model the gene expression level to tumor stage during malignancy progression. Such models could help us understand the dynamics and simplify or reveal the complexity of tumor progression.

METHODS

We have modeled an on-off state of gene activation per sample then per stage to select gene expression profiles associated to tumor progression. The selection is guided by statistical significance of profiles based on random permutated datasets.

RESULTS

We show that our method identifies expected profiles corresponding to oncogenes and tumor suppressor genes in a prostate tumor progression dataset. Comparisons with other methods support our findings and indicate that a considerable proportion of significant profiles is not found by other statistical tests commonly used to detect differential expression between tumor stages nor found by other tailored methods. Ontology and pathway analysis concurred with these findings.

CONCLUSIONS

Results suggest that our methodology may be a valuable tool to study tumor malignancy progression, which might reveal novel cancer therapies.

摘要

背景

癌症是一种复杂的疾病,其特征通常是多种癌症相关基因(如癌基因和肿瘤抑制基因)的活性受到破坏。先前的研究表明,肿瘤向恶性发展的过程是动态的,并且可以通过基因表达的变化来追踪。尽管在差异表达检测和生物标志物发现方面付出了巨大努力,但很少有方法被设计用于在恶性进展过程中对基因表达水平与肿瘤分期进行建模。这样的模型可以帮助我们理解动态变化,并简化或揭示肿瘤进展的复杂性。

方法

我们对每个样本然后每个阶段的基因激活开-关状态进行建模,以选择与肿瘤进展相关的基因表达谱。该选择以基于随机排列数据集的谱的统计显著性为指导。

结果

我们表明,我们的方法在前列腺肿瘤进展数据集中识别出了与癌基因和肿瘤抑制基因相对应的预期谱。与其他方法的比较支持了我们的发现,并表明相当一部分显著谱未被通常用于检测肿瘤分期之间差异表达的其他统计检验发现,也未被其他定制方法发现。本体论和通路分析与这些发现一致。

结论

结果表明,我们的方法可能是研究肿瘤恶性进展的有价值工具,这可能揭示新的癌症治疗方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a426/3691825/1ce4548a613d/1742-4682-10-37-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验