Suppr超能文献

多铁性和磁电材料——新的发展和展望。

Multiferroic and magnetoelectric materials--novel developments and perspectives.

机构信息

Angewandte Physik, Universitat Duisburg-Essen, Duisburg, Germany.

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2010 Oct;57(10):2228-32. doi: 10.1109/TUFFC.2010.1682.

Abstract

Magnetoelectric (ME) materials are of utmost interest in view of both fundamental understanding and novel desirable applications. Despite its smallness, the linear ME effect has been shown to control spintronic devices very efficiently, e.g., by using the classic ME antiferromagnet Cr₂O₃. Similar nano-engineering concepts exist also for type-I multiferroic single phase materials like BiFeO₃ and BiMnO₃. Record high ME response has been realized in stress-strain coupled multiphase magnetoelectrics like PZT/FeBSiC composites, enabling applications in sensors. In type-II multiferroics, whose ferroelectricity is due to modulated magnetic ordering, the ME coupling is of fundamental interest. Higher-order ME response characterizes disordered systems, which extend the conventional multiferroic scenario toward ME multiglass (e.g., Sr(1-x)MnxTiO₃).

摘要

磁电(ME)材料在基础理解和新型理想应用方面都具有重要意义。尽管线性 ME 效应很小,但已证明它可以非常有效地控制自旋电子器件,例如使用经典的 ME 反铁磁体 Cr₂O₃。类似的纳米工程概念也存在于单相多铁性材料,如 BiFeO₃ 和 BiMnO₃。在压电陶瓷/FeBSiC 复合材料等应力应变耦合多相磁电材料中,实现了创纪录的高 ME 响应,从而能够应用于传感器。在铁电性归因于调制磁有序的 II 型多铁性体中,ME 耦合具有根本意义。高阶 ME 响应表征无序系统,将传统的多铁性情景扩展到 ME 多玻璃(例如 Sr(1-x)MnxTiO₃)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验