Pradhan Dhiren K, Kumari Shalini, Rack Philip D
Department of Materials Science & Engineering, University of Tennessee, Knoxville, TN 37996, USA.
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
Nanomaterials (Basel). 2020 Oct 20;10(10):2072. doi: 10.3390/nano10102072.
Multiferroic (MF)-magnetoelectric (ME) composites, which integrate magnetic and ferroelectric materials, exhibit a higher operational temperature (above room temperature) and superior (several orders of magnitude) ME coupling when compared to single-phase multiferroic materials. Room temperature control and the switching of magnetic properties via an electric field and electrical properties by a magnetic field has motivated research towards the goal of realizing ultralow power and multifunctional nano (micro) electronic devices. Here, some of the leading applications for magnetoelectric composites are reviewed, and the mechanisms and nature of ME coupling in artificial composite systems are discussed. Ways to enhance the ME coupling and other physical properties are also demonstrated. Finally, emphasis is given to the important open questions and future directions in this field, where new breakthroughs could have a significant impact in transforming scientific discoveries to practical device applications, which can be well-controlled both magnetically and electrically.
多铁性(MF)-磁电(ME)复合材料集成了磁性和铁电材料,与单相多铁性材料相比,其具有更高的工作温度(高于室温)和优异的(几个数量级)磁电耦合。通过电场实现室温下磁性的控制和切换以及通过磁场实现电性能的控制,激发了人们朝着实现超低功耗和多功能纳米(微)电子器件的目标进行研究。在此,对磁电复合材料的一些主要应用进行了综述,并讨论了人工复合系统中磁电耦合的机制和本质。还展示了增强磁电耦合及其他物理性能的方法。最后,重点阐述了该领域重要的开放性问题和未来方向,在这些方面取得新突破可能会对将科学发现转化为实际器件应用产生重大影响,这些器件在磁和电方面都能得到很好的控制。