Lerche D, Oelke R
Humboldt University Berlin, Medical School (Charité), Berlin, Germany.
Int J Artif Organs. 1990 Nov;13(11):742-6.
Accounting for the non-Newtonian blood viscosity by the Quemada descriptive viscosity equation, we deduced velocity profiles and volumetric capillary flows from the Navier-Stokes-equation. An arbitrary axial and/or radial hematocrit profile can be chosen. The hematocrit dependence of the intrinsic viscosities k0 (H) (characterizing, at least in part, the RBC aggregation) and k infinity (H) (describing orientation/deformation of RBC) was taken into account. Velocity profiles for pressure gradients of 4-4000 Pa/cm show a distinct flattening, if a pronounced axial migration of RBC is assumed. The higher the axial concentration, the higher the flow at the same pressure gradient. Small deviations (less than or equal to 10%) of the capillary number per dialyzer or of the radius of capillaries lead to a strong change of the pressure gradient with the same dialyzer flow. Whereas small hydraulic conductivities do not significantly change this gradient, high conductivities decrease the pressure gradient by about 10%. Impaired blood flow properties (hemoconcentration) result in a slight deviation from the linear axial pressure drop.
通过Quemada描述性粘度方程考虑非牛顿血液粘度,我们从纳维-斯托克斯方程推导出速度分布和毛细血管容积流量。可以选择任意的轴向和/或径向血细胞比容分布。考虑了特性粘度k0(H)(至少部分表征红细胞聚集)和k∞(H)(描述红细胞的取向/变形)对血细胞比容的依赖性。如果假设红细胞有明显的轴向迁移,4-4000 Pa/cm压力梯度下的速度分布会出现明显的扁平化。轴向浓度越高,在相同压力梯度下的流量越高。每个透析器的毛细血管数或毛细血管半径的小偏差(小于或等于10%)会导致在相同透析器流量下压力梯度的强烈变化。而小的水力传导率不会显著改变这个梯度,高传导率会使压力梯度降低约10%。血流特性受损(血液浓缩)会导致轴向压降与线性关系略有偏差。