Suppr超能文献

混合离散时间神经网络。

Hybrid discrete-time neural networks.

机构信息

Department of Mathematics, School of Science, Beijing Jiaotong University, Beijing 100044, People's Republic of China.

出版信息

Philos Trans A Math Phys Eng Sci. 2010 Nov 13;368(1930):5071-86. doi: 10.1098/rsta.2010.0171.

Abstract

Hybrid dynamical systems combine evolution equations with state transitions. When the evolution equations are discrete-time (also called map-based), the result is a hybrid discrete-time system. A class of biological neural network models that has recently received some attention falls within this category: map-based neuron models connected by means of fast threshold modulation (FTM). FTM is a connection scheme that aims to mimic the switching dynamics of a neuron subject to synaptic inputs. The dynamic equations of the neuron adopt different forms according to the state (either firing or not firing) and type (excitatory or inhibitory) of their presynaptic neighbours. Therefore, the mathematical model of one such network is a combination of discrete-time evolution equations with transitions between states, constituting a hybrid discrete-time (map-based) neural network. In this paper, we review previous work within the context of these models, exemplifying useful techniques to analyse them. Typical map-based neuron models are low-dimensional and amenable to phase-plane analysis. In bursting models, fast-slow decomposition can be used to reduce dimensionality further, so that the dynamics of a pair of connected neurons can be easily understood. We also discuss a model that includes electrical synapses in addition to chemical synapses with FTM. Furthermore, we describe how master stability functions can predict the stability of synchronized states in these networks. The main results are extended to larger map-based neural networks.

摘要

混合动力系统将演化方程与状态转换相结合。当演化方程是离散时间的(也称为基于映射的)时,结果就是一个混合离散时间系统。最近受到一些关注的一类生物神经网络模型就属于这一类:基于映射的神经元模型通过快速阈值调制(FTM)连接。FTM 是一种连接方案,旨在模拟受突触输入影响的神经元的开关动力学。神经元的动态方程根据其前突触邻居的状态(发射或不发射)和类型(兴奋性或抑制性)采用不同的形式。因此,这样一个网络的数学模型是离散时间演化方程与状态之间转换的组合,构成了一个混合离散时间(基于映射的)神经网络。在本文中,我们在这些模型的背景下回顾了以前的工作,举例说明了分析它们的有用技术。典型的基于映射的神经元模型是低维的,并且适合相平面分析。在爆发模型中,可以使用快慢分解进一步降低维度,从而可以轻松理解一对连接神经元的动力学。我们还讨论了一个模型,该模型除了具有 FTM 的化学突触外,还包括电突触。此外,我们描述了主稳定性函数如何预测这些网络中同步状态的稳定性。主要结果被扩展到更大的基于映射的神经网络。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验