Department of Mathematical Sciences and Center for Mathematical Biosciences, IUPUI, Indianapolis, Indiana 46202, USA.
Chaos. 2010 Jun;20(2):023122. doi: 10.1063/1.3430545.
Excitatory-inhibitory networks arise in many regions throughout the central nervous system and display complex spatiotemporal firing patterns. These neuronal activity patterns (of individual neurons and/or the whole network) are closely related to the functional status of the system and differ between normal and pathological states. For example, neurons within the basal ganglia, a group of subcortical nuclei that are responsible for the generation of movement, display a variety of dynamic behaviors such as correlated oscillatory activity and irregular, uncorrelated spiking. Neither the origins of these firing patterns nor the mechanisms that underlie the patterns are well understood. We consider a biophysical model of an excitatory-inhibitory network in the basal ganglia and explore how specific biophysical properties of the network contribute to the generation of irregular spiking. We use geometric dynamical systems and singular perturbation methods to systematically reduce the model to a simpler set of equations, which is suitable for analysis. The results specify the dependence on the strengths of synaptic connections and the intrinsic firing properties of the cells in the irregular regime when applied to the subthalamopallidal network of the basal ganglia.
兴奋-抑制网络出现在中枢神经系统的许多区域,并表现出复杂的时空发射模式。这些神经元活动模式(单个神经元和/或整个网络)与系统的功能状态密切相关,并且在正常和病理状态之间存在差异。例如,基底神经节中的神经元,一组负责产生运动的皮质下核团,表现出多种动态行为,如相关的振荡活动和不规则、不相关的尖峰。这些发射模式的起源以及模式背后的机制都还没有被很好地理解。我们考虑了基底神经节中兴奋-抑制网络的生物物理模型,并探讨了网络的特定生物物理特性如何有助于不规则尖峰的产生。我们使用几何动力系统和奇异摄动方法将模型系统地简化为一组更简单的方程,这些方程适合于分析。当应用于基底神经节的丘脑底核-苍白球网络时,结果指定了不规则区域中突触连接强度和细胞固有发射特性的依赖性。