Suppr超能文献

单锤头核酶中的长程三级相互作用使动态采样偏向催化活性构象。

Long-range tertiary interactions in single hammerhead ribozymes bias motional sampling toward catalytically active conformations.

机构信息

Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, USA.

出版信息

RNA. 2010 Dec;16(12):2414-26. doi: 10.1261/rna.1829110. Epub 2010 Oct 4.

Abstract

Enzymes generally are thought to derive their functional activity from conformational motions. The limited chemical variation in RNA suggests that such structural dynamics may play a particularly important role in RNA function. Minimal hammerhead ribozymes are known to cleave efficiently only in ∼ 10-fold higher than physiologic concentrations of Mg(2+) ions. Extended versions containing native loop-loop interactions, however, show greatly enhanced catalytic activity at physiologically relevant Mg(2+) concentrations, for reasons that are still ill-understood. Here, we use Mg(2+) titrations, activity assays, ensemble, and single molecule fluorescence resonance energy transfer (FRET) approaches, combined with molecular dynamics (MD) simulations, to ask what influence the spatially distant tertiary loop-loop interactions of an extended hammerhead ribozyme have on its structural dynamics. By comparing hammerhead variants with wild-type, partially disrupted, and fully disrupted loop-loop interaction sequences we find that the tertiary interactions lead to a dynamic motional sampling that increasingly populates catalytically active conformations. At the global level the wild-type tertiary interactions lead to more frequent, if transient, encounters of the loop-carrying stems, whereas at the local level they lead to an enrichment in favorable in-line attack angles at the cleavage site. These results invoke a linkage between RNA structural dynamics and function and suggest that loop-loop interactions in extended hammerhead ribozymes-and Mg(2+) ions that bind to minimal ribozymes-may generally allow more frequent access to a catalytically relevant conformation(s), rather than simply locking the ribozyme into a single active state.

摘要

酶通常被认为其功能活性来自构象运动。RNA 的化学变化有限表明,这种结构动力学可能在 RNA 功能中发挥特别重要的作用。已知最小的锤头核酶仅在约 10 倍于生理浓度的 Mg(2+)离子下有效切割。然而,含有天然环-环相互作用的扩展版本在生理相关的 Mg(2+)浓度下显示出大大增强的催化活性,其原因仍未被充分理解。在这里,我们使用 Mg(2+)滴定、活性测定、整体和单分子荧光共振能量转移 (FRET) 方法,结合分子动力学 (MD) 模拟,来研究扩展的锤头核酶中空间上遥远的三级环-环相互作用对其结构动力学的影响。通过比较具有野生型、部分破坏和完全破坏的环-环相互作用序列的锤头变体,我们发现三级相互作用导致催化活性构象的动态运动采样增加。在全局水平上,野生型三级相互作用导致携带环的茎更频繁地(如果是短暂的)相遇,而在局部水平上,它们导致切割位点处有利的在线攻击角度富集。这些结果表明 RNA 结构动力学与功能之间存在联系,并表明扩展锤头核酶中的环-环相互作用以及与最小核酶结合的 Mg(2+)离子通常可以更频繁地进入催化相关构象,而不是简单地将核酶锁定在单一的活性状态。

相似文献

2
Efficient ligation of the Schistosoma hammerhead ribozyme.
Biochemistry. 2007 Mar 27;46(12):3826-34. doi: 10.1021/bi062077r. Epub 2007 Feb 24.
4
Structural Simplicity and Mechanistic Complexity in the Hammerhead Ribozyme.
Prog Mol Biol Transl Sci. 2018;159:177-202. doi: 10.1016/bs.pmbts.2018.07.006. Epub 2018 Sep 17.
5
Minimal Hammerhead Ribozymes with Uncompromised Catalytic Activity.
J Mol Biol. 2015 Jul 17;427(14):2340-7. doi: 10.1016/j.jmb.2015.05.005. Epub 2015 May 14.
9
Ribozymes: from mechanistic studies to applications in vivo.
J Biochem. 1995 Aug;118(2):251-8. doi: 10.1093/oxfordjournals.jbchem.a124899.

引用本文的文献

1
Enhanced hammerhead ribozyme turnover rates: Reevaluating therapeutic space for small catalytic RNAs.
Mol Ther Nucleic Acids. 2024 Dec 21;36(1):102431. doi: 10.1016/j.omtn.2024.102431. eCollection 2025 Mar 11.
2
A hammerhead ribozyme selects mechanically stable conformations for catalysis against viral RNA.
Commun Biol. 2025 Feb 3;8(1):165. doi: 10.1038/s42003-025-07600-3.
3
Toehold-mediated strand displacement to measure released product from self-cleaving ribozymes.
RNA. 2022 Feb;28(2):263-273. doi: 10.1261/rna.078823.121. Epub 2021 Dec 3.
4
Systematic Screening, Rational Development, and Initial Optimization of Efficacious RNA Silencing Agents for Human Rod Opsin Therapeutics.
Transl Vis Sci Technol. 2019 Dec 12;8(6):28. doi: 10.1167/tvst.8.6.28. eCollection 2019 Nov.
6
Life under the Microscope: Single-Molecule Fluorescence Highlights the RNA World.
Chem Rev. 2018 Apr 25;118(8):4120-4155. doi: 10.1021/acs.chemrev.7b00519. Epub 2018 Jan 24.
7
RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview.
Chem Rev. 2018 Apr 25;118(8):4177-4338. doi: 10.1021/acs.chemrev.7b00427. Epub 2018 Jan 3.
8
Soft Interactions with Model Crowders and Non-canonical Interactions with Cellular Proteins Stabilize RNA Folding.
J Mol Biol. 2018 Feb 16;430(4):509-523. doi: 10.1016/j.jmb.2017.10.030. Epub 2017 Nov 8.
9
Nucleobases Undergo Dynamic Rearrangements during RNA Tertiary Folding.
J Mol Biol. 2016 Nov 6;428(22):4490-4502. doi: 10.1016/j.jmb.2016.09.015. Epub 2016 Sep 29.

本文引用的文献

1
Essential Dynamics:  A Tool for Efficient Trajectory Compression and Management.
J Chem Theory Comput. 2006 Mar;2(2):251-8. doi: 10.1021/ct050285b.
2
Conformational dynamics of single pre-mRNA molecules during in vitro splicing.
Nat Struct Mol Biol. 2010 Apr;17(4):504-12. doi: 10.1038/nsmb.1767. Epub 2010 Mar 21.
3
Multiple native states reveal persistent ruggedness of an RNA folding landscape.
Nature. 2010 Feb 4;463(7281):681-4. doi: 10.1038/nature08717.
7
A rugged free energy landscape separates multiple functional RNA folds throughout denaturation.
Nucleic Acids Res. 2008 Dec;36(22):7088-99. doi: 10.1093/nar/gkn871. Epub 2008 Nov 6.
8
Capturing hammerhead ribozyme structures in action by modulating general base catalysis.
PLoS Biol. 2008 Sep 30;6(9):e234. doi: 10.1371/journal.pbio.0060234.
9
Metal ion specificities for folding and cleavage activity in the Schistosoma hammerhead ribozyme.
RNA. 2008 Oct;14(10):2212-22. doi: 10.1261/rna.1010808. Epub 2008 Aug 28.
10
Orientation dependence in fluorescent energy transfer between Cy3 and Cy5 terminally attached to double-stranded nucleic acids.
Proc Natl Acad Sci U S A. 2008 Aug 12;105(32):11176-81. doi: 10.1073/pnas.0801707105. Epub 2008 Aug 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验