Suppr超能文献

血吸虫锤头状核酶折叠和切割活性的金属离子特异性

Metal ion specificities for folding and cleavage activity in the Schistosoma hammerhead ribozyme.

作者信息

Boots Jennifer L, Canny Marella D, Azimi Ehsan, Pardi Arthur

机构信息

Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80309-0215, USA.

出版信息

RNA. 2008 Oct;14(10):2212-22. doi: 10.1261/rna.1010808. Epub 2008 Aug 28.

Abstract

The effects of various metal ions on cleavage activity and global folding have been studied in the extended Schistosoma hammerhead ribozyme. Fluorescence resonance energy transfer was used to probe global folding as a function of various monovalent and divalent metal ions in this ribozyme. The divalent metals ions Ca(2+), Mg(2+), Mn(2+), and Sr(2+) have a relatively small variation (less than sixfold) in their ability to globally fold the hammerhead ribozyme, which contrasts with the very large difference (>10,000-fold) in apparent rate constants for cleavage for these divalent metal ions in single-turnover kinetic experiments. There is still a very large range (>4600-fold) in the apparent rate constants for cleavage for these divalent metal ions measured in high salt (2 M NaCl) conditions where the ribozyme is globally folded. These results demonstrate that the identity of the divalent metal ion has little effect on global folding of the Schistosoma hammerhead ribozyme, whereas it has a very large effect on the cleavage kinetics. Mechanisms by which the identity of the divalent metal ion can have such a large effect on cleavage activity in the Schistosoma hammerhead ribozyme are discussed.

摘要

在延伸的血吸虫锤头状核酶中,研究了各种金属离子对切割活性和整体折叠的影响。荧光共振能量转移被用于探测该核酶中整体折叠与各种单价和二价金属离子的函数关系。二价金属离子Ca(2+)、Mg(2+)、Mn(2+)和Sr(2+)在使锤头状核酶整体折叠的能力方面有相对较小的变化(小于6倍),这与单周转动力学实验中这些二价金属离子切割的表观速率常数的巨大差异(>10000倍)形成对比。在高盐(2M NaCl)条件下,当核酶整体折叠时,这些二价金属离子切割的表观速率常数仍有非常大的范围(>4600倍)。这些结果表明,二价金属离子的种类对血吸虫锤头状核酶的整体折叠影响很小,而对切割动力学有非常大的影响。本文讨论了二价金属离子的种类对血吸虫锤头状核酶切割活性有如此大影响的机制。

相似文献

1
Metal ion specificities for folding and cleavage activity in the Schistosoma hammerhead ribozyme.
RNA. 2008 Oct;14(10):2212-22. doi: 10.1261/rna.1010808. Epub 2008 Aug 28.
3
Two Divalent Metal Ions and Conformational Changes Play Roles in the Hammerhead Ribozyme Cleavage Reaction.
Biochemistry. 2015 Oct 20;54(41):6369-81. doi: 10.1021/acs.biochem.5b00824. Epub 2015 Oct 2.
4
Efficient ligation of the Schistosoma hammerhead ribozyme.
Biochemistry. 2007 Mar 27;46(12):3826-34. doi: 10.1021/bi062077r. Epub 2007 Feb 24.
5
EPR spectroscopic analysis of U7 hammerhead ribozyme dynamics during metal ion induced folding.
Biochemistry. 2005 Sep 27;44(38):12870-8. doi: 10.1021/bi050549g.
6
Folding and activity of the hammerhead ribozyme.
Chembiochem. 2002 Aug 2;3(8):690-700. doi: 10.1002/1439-7633(20020802)3:8<690::AID-CBIC690>3.0.CO;2-C.
7
Divalent metal ions and the internal equilibrium of the hammerhead ribozyme.
Biochemistry. 1995 Nov 7;34(44):14435-40. doi: 10.1021/bi00044a021.
8
Active-site monovalent cations revealed in a 1.55-Å-resolution hammerhead ribozyme structure.
J Mol Biol. 2013 Oct 23;425(20):3790-8. doi: 10.1016/j.jmb.2013.05.017. Epub 2013 May 25.
9
Role of divalent metal ions in the hammerhead RNA cleavage reaction.
Biochemistry. 1991 Oct 1;30(39):9464-9. doi: 10.1021/bi00103a011.
10
Crystallographic structures of the hammerhead ribozyme: relationship to ribozyme folding and catalysis.
Annu Rev Biophys Biomol Struct. 1998;27:475-502. doi: 10.1146/annurev.biophys.27.1.475.

引用本文的文献

1
The secret life of RNA and lipids.
RNA Biol. 2025 Dec;22(1):1-28. doi: 10.1080/15476286.2025.2526903. Epub 2025 Jul 16.
3
Identification of Hammerhead-variant ribozyme sequences in SARS-CoV-2.
Nucleic Acids Res. 2024 Apr 12;52(6):3262-3277. doi: 10.1093/nar/gkae037.
4
Rolling Circles as a Means of Encoding Genes in the RNA World.
Life (Basel). 2022 Sep 2;12(9):1373. doi: 10.3390/life12091373.
6
Bulky cations greatly increase the turnover of a native hammerhead ribozyme.
RSC Adv. 2019 Nov 4;9(61):35820-35824. doi: 10.1039/c9ra06797c. eCollection 2019 Oct 31.
7
Hovlinc is a recently evolved class of ribozyme found in human lncRNA.
Nat Chem Biol. 2021 May;17(5):601-607. doi: 10.1038/s41589-021-00763-0. Epub 2021 Mar 22.
8
Biochemical analysis of cleavage and ligation activities of the pistol ribozyme from .
RNA Biol. 2021 Nov;18(11):1858-1866. doi: 10.1080/15476286.2021.1874706. Epub 2021 Feb 23.
9
Hofmeister Series for Metal-Cation-RNA Interactions: The Interplay of Binding Affinity and Exchange Kinetics.
Langmuir. 2020 Jun 2;36(21):5979-5989. doi: 10.1021/acs.langmuir.0c00851. Epub 2020 May 16.
10

本文引用的文献

1
Solvent structure and hammerhead ribozyme catalysis.
Chem Biol. 2008 Apr;15(4):332-42. doi: 10.1016/j.chembiol.2008.03.010.
2
Hammerhead redux: does the new structure fit the old biochemical data?
RNA. 2008 Apr;14(4):605-15. doi: 10.1261/rna.912608. Epub 2008 Feb 20.
3
Ribozyme catalysis revisited: is water involved?
Mol Cell. 2007 Dec 28;28(6):923-9. doi: 10.1016/j.molcel.2007.12.001.
4
Minimal and extended hammerheads utilize a similar dynamic reaction mechanism for catalysis.
RNA. 2008 Jan;14(1):43-54. doi: 10.1261/rna.717908. Epub 2007 Nov 12.
5
Structure-function relationships in RNA and RNP enzymes: recent advances.
Biopolymers. 2007;87(5-6):317-28. doi: 10.1002/bip.20836.
6
Low specificity of metal ion binding in the metal ion core of a folded RNA.
RNA. 2007 Aug;13(8):1205-13. doi: 10.1261/rna.566007. Epub 2007 Jul 6.
7
Ribozymes.
Curr Opin Struct Biol. 2007 Jun;17(3):280-6. doi: 10.1016/j.sbi.2007.05.003. Epub 2007 Jun 14.
8
Efficient ligation of the Schistosoma hammerhead ribozyme.
Biochemistry. 2007 Mar 27;46(12):3826-34. doi: 10.1021/bi062077r. Epub 2007 Feb 24.
10
Nucleobase catalysis in ribozyme mechanism.
Curr Opin Chem Biol. 2006 Oct;10(5):455-64. doi: 10.1016/j.cbpa.2006.08.014. Epub 2006 Aug 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验