Department of Landscape Architecture and Rural Systems Engineering, Seoul National University, Seoul 151-921, Korea.
J Environ Sci (China). 2010;22(6):840-5. doi: 10.1016/s1001-0742(09)60186-8.
This study described the development and validation of an artificial neural network (ANN) for the purpose of analyzing the effects of climate change on nonpoint source (NPS) pollutant loads from agricultural small watershed. The runoff discharge was estimated using ANN algorithm. The performance of ANN modelwas examined using observed data from s tudy watershed. The simulationresults agreed well with observed values during calibration and validation periods. NPS pollutant loads were calculated from load-discharge relationship driven by long-term monitoring data. LARS-WG (Long Ashton Research Station-Weather Generator) model was used to generate rainfall data. The calibrated ANN model and load-discharge relationship with the generated data from LARS-WGwere applied to analyze the effects of climate change on NPS pollutant loads from the agricultural small watershed. The results showed that the ANN model provided valuable approach i n estimating future runof f discharge, and the NPS pollutantloads.
本研究旨在开发和验证人工神经网络(ANN),以分析气候变化对农业小流域非点源(NPS)污染物负荷的影响。采用 ANN 算法估算径流量。利用研究流域的观测数据检验 ANN 模型的性能。在校准和验证期间,模拟结果与观测值吻合较好。根据长期监测数据驱动的负荷-流量关系计算 NPS 污染物负荷。采用 LARS-WG(朗阿斯顿研究站-气象发生器)模型生成降雨数据。将校准后的 ANN 模型和负荷-流量关系与 LARS-WG 生成的数据相结合,应用于分析气候变化对农业小流域 NPS 污染物负荷的影响。结果表明,ANN 模型在估算未来径流量和 NPS 污染物负荷方面提供了有价值的方法。