Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, USA.
Neuroscience. 2010 Dec 29;171(4):1075-90. doi: 10.1016/j.neuroscience.2010.09.050. Epub 2010 Oct 20.
The vulnerability of brain neuronal cell subpopulations to neurologic insults varies greatly. Among cells that survive a pathological insult, for example ischemia or brain trauma, some may undergo morphological and/or biochemical changes that may compromise brain function. The present study is a follow-up of our previous studies that investigated the effect of glutamate-induced excitotoxicity on the GABA synthesizing enzyme glutamic acid decarboxylase (GAD65/67)'s expression in surviving DIV 11 cortical GABAergic neurons in vitro [Monnerie and Le Roux, (2007) Exp Neurol 205:367-382, (2008) Exp Neurol 213:145-153]. An N-methyl-D-aspartate receptor (NMDAR)-mediated decrease in GAD expression was found following glutamate exposure. Here we examined which NMDAR subtype(s) mediated the glutamate-induced change in GAD protein levels. Western blotting techniques on cortical neuron cultures showed that glutamate's effect on GAD proteins was not altered by NR2B-containing diheteromeric (NR1/NR2B) receptor blockade. By contrast, blockade of triheteromeric (NR1/NR2A/NR2B) receptors fully protected against a decrease in GAD protein levels following glutamate exposure. When receptor location on the postsynaptic membrane was examined, extrasynaptic NMDAR stimulation was observed to be sufficient to decrease GAD protein levels similar to that observed after glutamate bath application. Blocking diheteromeric receptors prevented glutamate's effect on GAD proteins after extrasynaptic NMDAR stimulation. Finally, NR2B subunit examination with site-specific antibodies demonstrated a glutamate-induced, calpain-mediated alteration in NR2B expression. These results suggest that glutamate-induced excitotoxic NMDAR stimulation in cultured GABAergic cortical neurons depends upon subunit composition and receptor location (synaptic vs. extrasynaptic) on the neuronal membrane. Biochemical alterations in surviving cortical GABAergic neurons in various disease states may contribute to the altered balance between excitation and inhibition that is often observed after injury.
脑神经元细胞亚群对神经损伤的易感性差异很大。例如,在经历病理性损伤(如缺血或脑创伤)后存活的细胞中,有些细胞可能会发生形态和/或生化变化,从而损害脑功能。本研究是对我们之前研究的后续,该研究调查了谷氨酸诱导的兴奋性毒性对体外培养的第 11 天皮质 GABA 能神经元中 GABA 合成酶谷氨酸脱羧酶(GAD65/67)表达的影响[Monnerie 和 Le Roux,(2007)Exp Neurol 205:367-382,(2008)Exp Neurol 213:145-153]。谷氨酸暴露后发现 N-甲基-D-天冬氨酸受体(NMDAR)介导的 GAD 表达减少。在这里,我们检查了哪种 NMDAR 亚型(s)介导了谷氨酸诱导的 GAD 蛋白水平变化。皮质神经元培养物的 Western 印迹技术显示,谷氨酸对 GAD 蛋白的作用不受含有 NR2B 的二聚体(NR1/NR2B)受体阻断的影响。相比之下,三聚体(NR1/NR2A/NR2B)受体阻断完全防止了谷氨酸暴露后 GAD 蛋白水平的下降。当检查突触后膜上的受体位置时,观察到 extrasynaptic NMDAR 刺激足以降低 GAD 蛋白水平,类似于观察到的谷氨酸浴应用后的情况。阻断二聚体受体可防止谷氨酸对 extrasynaptic NMDAR 刺激后 GAD 蛋白的作用。最后,用位点特异性抗体对 NR2B 亚基进行检查,显示 NR2B 表达发生了谷氨酸诱导的钙蛋白酶介导的改变。这些结果表明,体外培养的 GABA 能皮质神经元中谷氨酸诱导的兴奋性毒性 NMDAR 刺激取决于亚基组成和神经元膜上的受体位置(突触内 vs. extrasynaptic)。各种疾病状态下存活的皮质 GABA 能神经元中的生化改变可能导致损伤后经常观察到的兴奋与抑制之间平衡的改变。