Suppr超能文献

对数据进行窗口化处理以区分马尔可夫模型的方法。

Methods to window data to differentiate between Markov models.

作者信息

Schwier Jason M, Brooks Richard R, Griffin Christopher

机构信息

Holcombe Department of Electrical and Computer Engineering, Clemson University, Clemson, SC 29634, USA.

出版信息

IEEE Trans Syst Man Cybern B Cybern. 2011 Jun;41(3):650-63. doi: 10.1109/TSMCB.2010.2076325. Epub 2010 Oct 4.

Abstract

In this paper, we consider how we can detect patterns in data streams that are serial Markovian, where target behaviors are Markovian, but targets may switch from one Markovian behavior to another. We want to reliably and promptly detect behavior changes. Traditional Markov-model-based pattern detection approaches, such as hidden Markov models, use maximum likelihood techniques over the entire data stream to detect behaviors. To detect changes between behaviors, we use statistical pattern matching calculations performed on a sliding window of data samples. If the window size is very small, the system will suffer from excessive false-positive rates. If the window is very large, change-point detection is delayed. This paper finds both necessary and sufficient bounds on the window size. We present two methods of calculating window sizes based on the state and transition structures of the Markov models. Two application examples are presented to verify our results. Our first example problem uses simulations to illustrate the utility of the proposed approaches. The second example uses models extracted from a database of consumer purchases to illustrate their use in a real application.

摘要

在本文中,我们考虑如何检测数据流中的模式,这些数据流是序列马尔可夫的,其中目标行为是马尔可夫的,但目标可能从一种马尔可夫行为切换到另一种。我们希望可靠且迅速地检测行为变化。传统的基于马尔可夫模型的模式检测方法,如隐马尔可夫模型,在整个数据流上使用最大似然技术来检测行为。为了检测行为之间的变化,我们对数据样本的滑动窗口执行统计模式匹配计算。如果窗口大小非常小,系统将遭受过高的误报率。如果窗口非常大,变化点检测会延迟。本文找到了窗口大小的必要和充分界限。我们基于马尔可夫模型的状态和转移结构提出了两种计算窗口大小的方法。给出了两个应用示例来验证我们的结果。我们的第一个示例问题使用模拟来说明所提出方法的效用。第二个示例使用从消费者购买数据库中提取的模型来说明它们在实际应用中的使用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验