Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
J Biol Chem. 2010 Dec 3;285(49):38658-65. doi: 10.1074/jbc.M110.170670. Epub 2010 Oct 7.
Protein-protein interfaces are usually large and complementary surfaces, but specific side chains, representing energetic "hot spots," often contribute disproportionately to binding free energy. We used a computational method, comprehensive interface design, to identify hot spots in the interface between the stalk regions of the β3 and the complementary αIIb and αv integrin subunits. Using the Rosetta alanine-scanning and design algorithms to predict destabilizing, stabilizing, and neutral mutations in the β3 region extending from residues Lys(532) through Gly(690), we predicted eight alanine mutations that would destabilize the αIIbβ3 interface as well as nine predicted to destabilize the αvβ3 interface, by at least 0.3 kcal/mol. The mutations were widely and unevenly distributed, with four between residues 552 and 563 and five between 590 and 610, but none between 565 and 589, and 611 and 655. Further, mutations destabilizing the αvβ3 and αIIbβ3 interfaces were not identical. The predictions were then tested by introducing selected mutations into the full-length integrins expressed in Chinese hamster ovary cells. Five mutations predicted to destabilize αIIb and β3 caused fibrinogen binding to αIIbβ3, whereas three of four predicted to be neutral or stabilizing did not. Conversely, a mutation predicted to destabilize αvβ3, but not αIIbβ3 (D552A), caused osteopontin binding to αvβ3, but not fibrinogen binding to αIIbβ3. These results indicate that stability of the distal stalk interface is involved in constraining integrins in stable, inactive conformations. Further, they demonstrate the ability of comprehensive interface design to identify functionally significant integrin mutations.
蛋白质-蛋白质界面通常较大且互补,但特定的侧链,代表能量“热点”,往往对结合自由能有不成比例的贡献。我们使用一种计算方法,全面界面设计,来识别β3 和互补αIIb 和 αv 整合素亚基的茎部区域之间界面的热点。使用 Rosetta 丙氨酸扫描和设计算法来预测β3 区域中从残基 Lys(532)到 Gly(690)的不稳定、稳定和中性突变,我们预测了八个丙氨酸突变,这些突变会使αIIbβ3 界面不稳定,还有九个预测会使αvβ3 界面不稳定,至少 0.3 kcal/mol。突变广泛且不均匀地分布,其中四个位于残基 552 和 563 之间,五个位于 590 和 610 之间,但 565 和 589 之间没有,611 和 655 之间也没有。此外,使αvβ3 和αIIbβ3 界面不稳定的突变并不相同。然后通过将选定的突变引入在中国仓鼠卵巢细胞中表达的全长整合素来测试这些预测。五个预测会使αIIb 和β3 不稳定的突变导致纤维蛋白原与αIIbβ3 结合,而四个预测为中性或稳定的突变则没有。相反,一个预测会使αvβ3 不稳定,但不会使αIIbβ3 不稳定的突变(D552A),导致骨桥蛋白与αvβ3 结合,但不会导致纤维蛋白原与αIIbβ3 结合。这些结果表明,远端茎干界面的稳定性涉及将整合素约束在稳定、非活性构象中。此外,它们证明了全面界面设计识别功能重要的整合素突变的能力。