Hals-Nasen-Ohrenklinik und Poliklinik, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany.
Stroke. 2010 Nov;41(11):2618-24. doi: 10.1161/STROKEAHA.110.593327. Epub 2010 Oct 7.
We sought to demonstrate that tumor necrosis factor (TNF)-α, via sphingosine-1-phosphate signaling, has the potential to alter cochlear blood flow and thus, cause ischemic hearing loss.
We performed intravital fluorescence microscopy to measure blood flow and capillary diameter in anesthetized guinea pigs. To measure capillary diameter ex vivo, capillary beds from the gerbil spiral ligament were isolated from the cochlear lateral wall and maintained in an organ bath. Isolated gerbil spiral modiolar arteries, maintained and transfected in organ culture, were used to measure calcium sensitivity (calcium-tone relationship). In a clinical study, a total of 12 adult patients presenting with typical symptoms of sudden hearing loss who were not responsive or only partially responsive to prednisolone treatment were identified and selected for etanercept treatment. Etanercept (25 mg s.c.) was self-administered twice a week for 12 weeks.
TNF-α induced a proconstrictive state throughout the cochlear microvasculature, which reduced capillary diameter and cochlear blood flow in vivo. In vitro isolated preparations of the spiral modiolar artery and spiral ligament capillaries confirmed these observations. Antagonizing sphingosine-1-phosphate receptor 2 subtype signaling (by 1 μmol/L JTE013) attenuated the effects of TNF-α in all models. TNF-α activated sphingosine kinase 1 (Sk1) and induced its translocation to the smooth muscle cell membrane. Expression of a dominant-negative Sk1 mutant (Sk1(G82D)) eliminated both baseline spiral modiolar artery calcium sensitivity and TNF-α effects, whereas a nonphosphorylatable Sk1 mutant (Sk1(S225A)) blocked the effects of TNF-α only. A small group of etanercept-treated, hearing loss patients recovered according to a 1-phase exponential decay (half-life=1.56 ± 0.20 weeks), which matched the kinetics predicted for a vascular origin.
TNF-α indeed reduces cochlear blood flow via activation of vascular sphingosine-1-phosphate signaling. This integrates hearing loss into the family of ischemic microvascular pathologies, with implications for risk stratification, diagnosis, and treatment.
我们旨在证明肿瘤坏死因子(TNF)-α 通过鞘氨醇-1-磷酸信号通路,具有改变耳蜗血流的潜力,从而导致缺血性听力损失。
我们进行了活体荧光显微镜检查,以测量麻醉豚鼠的血流和毛细血管直径。为了在体外测量毛细血管直径,将沙鼠螺旋韧带的毛细血管床从耳蜗外侧壁分离出来,并保存在器官浴中。分离的沙鼠螺旋模动脉在器官培养中维持和转染,用于测量钙敏感性(钙音关系)。在一项临床研究中,共选择了 12 名成人患者,他们表现出典型的突发性听力损失症状,对泼尼松龙治疗无反应或仅有部分反应,选择接受依那西普治疗。依那西普(25 mg sc)每周两次自我给药,共 12 周。
TNF-α诱导耳蜗微血管系统产生促收缩状态,导致毛细血管直径和耳蜗血流减少。在体内分离的螺旋模动脉和螺旋韧带毛细血管的体外标本中证实了这些观察结果。通过拮抗鞘氨醇-1-磷酸受体 2 亚型信号(通过 1 μmol/L JTE013),在所有模型中均减弱了 TNF-α 的作用。TNF-α激活了鞘氨醇激酶 1(Sk1)并诱导其向平滑肌细胞膜转位。表达显性负 Sk1 突变体(Sk1(G82D))消除了螺旋模动脉的基础钙敏感性和 TNF-α的作用,而不可磷酸化的 Sk1 突变体(Sk1(S225A))仅阻断了 TNF-α的作用。一小部分接受依那西普治疗的听力损失患者根据 1 相指数衰减(半衰期=1.56±0.20 周)恢复,这与血管起源的预测动力学相匹配。
TNF-α确实通过激活血管鞘氨醇-1-磷酸信号通路降低了耳蜗血流。这将听力损失纳入了缺血性微血管病变家族,对风险分层、诊断和治疗具有重要意义。