Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA.
Trends Cogn Sci. 2010 Nov;14(11):506-15. doi: 10.1016/j.tics.2010.09.001.
Recent studies suggest that cross-frequency coupling (CFC) might play a functional role in neuronal computation, communication and learning. In particular, the strength of phase-amplitude CFC differs across brain areas in a task-relevant manner, changes quickly in response to sensory, motor and cognitive events, and correlates with performance in learning tasks. Importantly, whereas high-frequency brain activity reflects local domains of cortical processing, low-frequency brain rhythms are dynamically entrained across distributed brain regions by both external sensory input and internal cognitive events. CFC might thus serve as a mechanism to transfer information from large-scale brain networks operating at behavioral timescales to the fast, local cortical processing required for effective computation and synaptic modification, thus integrating functional systems across multiple spatiotemporal scales.
最近的研究表明,跨频耦合(CFC)可能在神经元计算、通信和学习中发挥功能作用。特别是,相位-幅度 CFC 的强度在与任务相关的方式上在不同的脑区之间有所不同,它会快速响应感觉、运动和认知事件而变化,并且与学习任务的表现相关。重要的是,虽然高频脑活动反映了皮质处理的局部区域,但低频脑节律通过外部感觉输入和内部认知事件在分布式脑区之间动态地被调整。因此,CFC 可以作为一种机制,将在行为时间尺度上运行的大规模脑网络中的信息传递到快速、局部的皮质处理中,从而实现有效的计算和突触修饰,从而整合多个时空尺度的功能系统。