Helsinki Institute for Life Sciences, Neuroscience Center, University of Helsinki, P.O. Box 56, Viikinkaari 4, 00014 Helsinki, Finland.
Eur J Neurosci. 2018 Oct;48(7):2399-2406. doi: 10.1111/ejn.13767. Epub 2017 Dec 2.
Neuronal oscillations and their inter-areal synchronization may be instrumental in regulating neuronal communication in distributed networks. Several lines of research have, however, shown that cognitive tasks engage neuronal oscillations simultaneously in multiple frequency bands that have distinct functional roles in cognitive processing. Gamma oscillations (30-120 Hz) are associated with bottom-up processing, while slower oscillations in delta (1-4 Hz), theta (4-7 Hz), alpha (8-14 Hz) and beta (14-30 Hz) frequency bands may have roles in executive or top-down controlling functions, although also other distinctions have been made. Identification of the mechanisms that integrate such spectrally distributed processing and govern neuronal communication among these networks is crucial for understanding how cognitive functions are achieved in neuronal circuits. Cross-frequency interactions among oscillations have been recognized as a likely candidate mechanism for such integration. We advance here the hypothesis that phase-phase synchronization of neuronal oscillations in two different frequency bands, cross-frequency phase synchrony (CFS), could serve to integrate, coordinate and regulate neuronal processing distributed into neuronal assemblies concurrently in multiple frequency bands. A trail of studies over the past decade has revealed the presence of CFS among cortical oscillations and linked CFS with roles in cognitive integration. We propose that CFS could connect fast and slow oscillatory networks and thereby integrate distributed cognitive functions such as representation of sensory information with attentional and executive functions.
神经元的振荡及其区域间的同步可能在调节分布式网络中的神经元通讯中起着重要作用。然而,有几条研究线索表明,认知任务同时涉及多个频率带的神经元振荡,这些频率带在认知处理中具有不同的功能作用。伽马振荡(30-120 Hz)与自下而上的处理有关,而较慢的 delta(1-4 Hz)、theta(4-7 Hz)、alpha(8-14 Hz)和 beta(14-30 Hz)频率带中的振荡可能在执行或自上而下的控制功能中发挥作用,尽管也有其他区分。确定整合这种频谱分布处理并控制这些网络之间神经元通讯的机制对于理解认知功能如何在神经元回路中实现至关重要。振荡之间的跨频相互作用已被认为是这种整合的一种可能的机制。我们在此提出假设,即两个不同频率带中的神经元振荡的相位-相位同步,即跨频相位同步(CFS),可以用于整合、协调和调节分布在多个频率带中的神经元处理。过去十年中的一系列研究揭示了皮质振荡中 CFS 的存在,并将 CFS 与认知整合的作用联系起来。我们提出,CFS 可以连接快速和慢速振荡网络,从而整合分布式认知功能,例如将感觉信息的表示与注意力和执行功能联系起来。