Baca Helen K, Carnes Eric C, Ashley Carlee E, Lopez DeAnna M, Douthit Cynthia, Karlin Shelly, Brinker C Jeffrey
University of New Mexico, Albuquerque, NM, USA.
Biochim Biophys Acta. 2011 Mar;1810(3):259-67. doi: 10.1016/j.bbagen.2010.09.005. Epub 2010 Oct 8.
The desire to immobilize, encapsulate, or entrap viable cells for use in a variety of applications has been explored for decades. Traditionally, the approach is to immobilize cells to utilize a specific functionality of the cell in the system.
This review describes our recent discovery that living cells can organize extended nanostructures and nano-objects to create a highly biocompatible nano//bio interface [1].
We find that short chain phospholipids direct the formation of thin film silica mesophases during evaporation-induced self-assembly (EISA) [2], and that the introduction of cells alter the self-assembly pathway. Cells organize an ordered lipid-membrane that forms a coherent interface with the silica mesophase that is unique in that it withstands drying-yet it maintains accessibility to molecules introduced into the 3D silica host. Cell viability is preserved in the absence of buffer, making these constructs useful as standalone cell-based sensors. In response to hyperosmotic stress, the cells release water, creating a pH gradient which is maintained within the nanostructured host and serves to localize lipids, proteins, plasmids, lipidized nanocrystals, and other components at the cellular surface. This active organization of the bio/nano interface can be accomplished during ink-jet printing or selective wetting-processes allowing patterning of cellular arrays-and even spatially-defined genetic modification.
Recent advances in the understanding of nanotechnology and cell biology encourage the pursuit of more complex endeavors where the dynamic interactions of the cell and host material act symbiotically to obtain new, useful functions. This article is part of a Special Issue entitled Nanotechnologies - Emerging Applications in Biomedicine.
几十年来,人们一直在探索将活细胞固定、封装或包埋起来以用于各种应用的方法。传统上,这种方法是固定细胞以利用系统中细胞的特定功能。
本综述描述了我们最近的发现,即活细胞可以组织扩展的纳米结构和纳米物体,以创建高度生物相容的纳米//生物界面[1]。
我们发现短链磷脂在蒸发诱导自组装(EISA)过程中引导薄膜二氧化硅中间相的形成[2],并且细胞的引入改变了自组装途径。细胞组织形成有序的脂质膜,该脂质膜与二氧化硅中间相形成连贯的界面,其独特之处在于它能耐受干燥——但仍能保持对引入三维二氧化硅主体中的分子的可及性。在没有缓冲液的情况下细胞活力得以保留,这使得这些构建体可用作独立的基于细胞的传感器。响应高渗应激时,细胞释放水分,产生一个pH梯度,该梯度在纳米结构主体内得以维持,并用于将脂质、蛋白质、质粒、脂质化纳米晶体和其他成分定位在细胞表面。生物/纳米界面的这种主动组织可以在喷墨打印或选择性润湿过程中完成,从而实现细胞阵列的图案化——甚至是空间定义的基因修饰。
纳米技术和细胞生物学理解方面的最新进展鼓励人们追求更复杂的努力,其中细胞与宿主材料的动态相互作用以共生方式发挥作用,从而获得新的有用功能。本文是名为“纳米技术——生物医学中的新兴应用”的特刊的一部分。