Department of Cardiac Surgery, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
Cardiovasc Res. 2011 Feb 1;89(2):410-8. doi: 10.1093/cvr/cvq321. Epub 2010 Oct 8.
Inadequate capillary growth in pressure-overload hypertrophy impairs myocardial perfusion and substrate delivery, contributing to progression to failure. Capillary growth is tightly regulated by angiogenesis growth factors like vascular endothelial growth factor (VEGF) and endogenous inhibitors such as the splice variant of VEGF receptor-1, sVEGFR-1. We hypothesized that inadequate expression of VEGF and up-regulation of VEGFR-1 and its soluble splice variant, sVEGFR-1, restrict capillary growth in pressure-overload hypertrophy.
Neonatal New Zealand White rabbits underwent aortic banding. mRNA (qRT-PCR) and protein levels (immunoblotting) were determined in hypertrophied and control myocardium (7/group) for total VEGF, VEGFR-1, sVEGFR-1, VEGFR-2, and phospho-VEGFR-1 and -R-2. Free VEGF was determined by enzyme-linked immunoassay (ELISA) in hypertrophied myocardium, controls, and hypertrophied hearts following inhibition of sVEGFR-1 with placental growth factor (PlGF). VEGFR-1 and sVEGFR-1 mRNA (seven-fold up-regulation, P = 0.001) and protein levels were significantly up-regulated in hypertrophied hearts vs. controls (VEGFR-1: 44 ± 8 vs. 23 ± 1, P = 0.031; sVEGFR-1: 71 ± 13 vs. 31 ± 3, P = 0.016). There was no change in VEGF and VEGFR-2 mRNA or protein levels in hypertrophied compared with controls hearts. A significant decline in free, unbound VEGF was found in hypertrophied myocardium which was reversed following inhibition of sVEGFR-1 with PlGF, which was accompanied by phosphorylation of VEGFR-1 and VEGFR-2.
Up-regulation of the soluble VEGFR-1 in pressure-loaded myocardium prevents capillary growth by trapping VEGF. Inhibition of sVEGFR-1 released sufficient VEGF to induce angiogenesis and preserved contractile function. These data suggest sVEGFR-1 as possible therapeutic targets to prevent heart failure.
在压力超负荷性肥大中,毛细血管生长不足会损害心肌灌注和底物供应,导致心力衰竭的进展。毛细血管的生长受到血管内皮生长因子(VEGF)等血管生成生长因子和 VEGF 受体-1 的剪接变体 sVEGFR-1 等内源性抑制剂的紧密调节。我们假设 VEGF 表达不足以及 VEGFR-1 和其可溶性剪接变体 sVEGFR-1 的上调限制了压力超负荷性肥大中的毛细血管生长。
新生新西兰白兔接受主动脉缩窄术。在肥大和对照组心肌(每组 7 只)中通过 qRT-PCR 和免疫印迹法测定总 VEGF、VEGFR-1、sVEGFR-1、VEGFR-2 和磷酸化-VEGFR-1 和 -R-2 的 mRNA 和蛋白水平。通过酶联免疫吸附试验(ELISA)测定肥大心肌、对照组和肥大心肌中 sVEGFR-1 抑制后游离 VEGF 的含量。与对照组相比,肥大心脏中 VEGFR-1 和 sVEGFR-1 的 mRNA(七倍上调,P = 0.001)和蛋白水平显著上调(VEGFR-1:44 ± 8 对 23 ± 1,P = 0.031;sVEGFR-1:71 ± 13 对 31 ± 3,P = 0.016)。与对照组相比,肥大心脏中 VEGF 和 VEGFR-2 的 mRNA 或蛋白水平没有变化。在肥大心肌中发现游离、未结合的 VEGF 显著下降,用 PlGF 抑制 sVEGFR-1 后可逆转这种下降,同时伴随着 VEGFR-1 和 VEGFR-2 的磷酸化。
在受压力负荷的心肌中,可溶性 VEGFR-1 的上调通过捕获 VEGF 来阻止毛细血管生长。抑制 sVEGFR-1 释放足够的 VEGF 以诱导血管生成并保留收缩功能。这些数据表明 sVEGFR-1 可能是预防心力衰竭的治疗靶点。