Jurow Matthew, Schuckman Amanda E, Batteas James D, Drain Charles Michael
Department of Chemistry and Biochemistry, Hunter College of the City University of New York, 695 Park Avenue, New York, New York, 10065.
Coord Chem Rev. 2010 Oct 1;254(19-20):2297-2310. doi: 10.1016/j.ccr.2010.05.014.
The proposal that molecules can perform electronic functions in devices such as diodes, rectifiers, wires, capacitors, or serve as functional materials for electronic or magnetic memory, has stimulated intense research across physics, chemistry, and engineering for over 35 years. Because biology uses porphyrins and metalloporphyrins as catalysts, small molecule transporters, electrical conduits, and energy transducers in photosynthesis, porphyrins are an obvious class of molecules to investigate for molecular electronic functions. Of the numerous kinds of molecules under investigation for molecular electronics applications, porphyrins and their related macrocycles are of particular interest because they are robust and their electronic properties can be tuned by chelation of a metal ion and substitution on the macrocycle. The other porphyrinoids have equally variable and adjustable photophysical properties, thus photonic applications are potentiated. At least in the near term, realistic architectures for molecular electronics will require self-organization or nanoprinting on surfaces. This review concentrates on self-organized porphyrinoids as components of working electronic devices on electronically active substrates with particular emphasis on the effect of surface, molecular design, molecular orientation and matrix on the detailed electronic properties of single molecules.
分子能够在诸如二极管、整流器、导线、电容器等器件中执行电子功能,或者用作电子或磁存储的功能材料,这一设想在超过35年的时间里激发了物理学、化学和工程学领域的深入研究。由于生物学在光合作用中使用卟啉和金属卟啉作为催化剂、小分子转运体、电导体和能量转换体,因此卟啉是研究分子电子功能的一类显而易见的分子。在众多用于分子电子学应用研究的分子中,卟啉及其相关大环化合物特别引人关注,因为它们很稳定,并且其电子性质可通过金属离子螯合和大环上的取代作用进行调节。其他类卟啉化合物同样具有可变且可调节的光物理性质,因此增强了光子学应用。至少在短期内,分子电子学的实际架构将需要在表面进行自组装或纳米印刷。本综述着重介绍自组装类卟啉化合物作为在电子活性衬底上工作的电子器件的组件,特别强调表面、分子设计、分子取向和基质对单分子详细电子性质的影响。