Department of Chemistry, University of York, Heslington, York, UK YO10 5DD.
Dalton Trans. 2010 Nov 21;39(43):10432-41. doi: 10.1039/c0dt00431f. Epub 2010 Oct 12.
The ruthenium bis-acetate complex Ru(κ(2)-OAc)(2)(PPh(3))(2) reacts with HC≡CPh to afford the vinylidene-containing species Ru(κ(1)-OAc)(κ(2)-OAc)(=C=CHPh)(PPh(3))(2). An experimental study has demonstrated that this reaction occurs under very mild conditions, with significant conversion being observed at 255 K. At lower temperatures, evidence for a transient metallo-enol ester species Ru(κ(1)-OAc)(OC{Me}O-C=CHPh)(PPh(3))(2) was obtained. A comprehensive theoretical study to probe the nature of the alkyne/vinylidene tautomerisation has been undertaken using Density Functional Theory. Calculations based on a number of isomers of the model system Ru(κ(1)-OAc)(κ(2)-OAc)(=C=CHMe)(PH(3))(2) demonstrate that both the η(2)(CC) alkyne complex Ru(κ(1)-OAc)(κ(2)-OAc)(η(2)-HC≡CMe)(PH(3))(2) and the C-H agostic σ-complex Ru(κ(1)-OAc)(κ(2)-OAc)(η(2){CH}-HC≡CMe)(PH(3))(2) are minima on the potential energy surface. The lowest energy pathway for the formation of the vinylidene complex involves the intramolecular deprotonation of the σ-complex by an acetate ligand followed by reprotonation of the subsequently formed alkynyl ligand. This process is thus termed a Ligand-Assisted Proton Shuttle (LAPS). Calculations performed on the full experimental system Ru(κ(1)-OAc)(κ(2)-OAc)(=C=CHPh)(PPh(3))(2) reinforce the notion that lowest energy pathway involves the deprotonation/reprotonation of the alkyne by an acetate ligand. Inclusion of the full ligand substituents in the calculations are necessary to reproduce the experimental observation of Ru(κ(1)-OAc)(κ(2)-OAc)(=C=CHPh)(PPh(3))(2) as the thermodynamic product.
钌双乙酸盐配合物 Ru(κ(2)-OAc)(2)(PPh(3))(2) 与 HC≡CPh 反应生成含有亚乙烯基的物种 Ru(κ(1)-OAc)(κ(2)-OAc)(=C=CHPh)(PPh(3))(2)。一项实验研究表明,该反应在非常温和的条件下发生,在 255 K 时观察到显著的转化率。在较低温度下,获得了瞬态金属烯醇酯物种 Ru(κ(1)-OAc)(OC{Me}O-C=CHPh)(PPh(3))(2)的证据。为了探究炔烃/亚乙烯基互变异构的本质,采用密度泛函理论进行了全面的理论研究。基于模型体系 Ru(κ(1)-OAc)(κ(2)-OAc)(=C=CHMe)(PH(3))(2)的许多异构体的计算表明,η(2)(CC)炔烃配合物 Ru(κ(1)-OAc)(κ(2)-OAc)(η(2)-HC≡CMe)(PH(3))(2)和 C-H 螯合 σ-配合物 Ru(κ(1)-OAc)(κ(2)-OAc)(η(2){CH}-HC≡CMe)(PH(3))(2)都是势能表面上的最小值。形成亚乙烯基配合物的最低能量途径涉及 σ-配合物通过乙酸盐配体的分子内去质子化,随后炔烃配体的再质子化。因此,这个过程被称为配体辅助质子转移(LAPS)。对完整实验体系 Ru(κ(1)-OAc)(κ(2)-OAc)(=C=CHPh)(PPh(3))(2)进行的计算进一步证实,最低能量途径涉及通过乙酸盐配体对炔烃进行去质子化/质子化。在计算中包含完整的配体取代基对于重现实验观察到的 Ru(κ(1)-OAc)(κ(2)-OAc)(=C=CHPh)(PPh(3))(2)作为热力学产物是必要的。